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VAE and ELBO

* A VAE models the distribution p,,:,(x) of the observed 9 Pg(x)

variable x € R™ by jointly learning a stochastic latent
variable z € R™, — | Network |—>

« Generation is performed by sampling z from the prior p(z), G(z) = x

then sampling x according to a probabilistic decoder

pe(x|z) parametrized by 6 € 0.
« How toupdate 8 ? MLE  pa(z) = /p(z)pg(:c | 2)dz ® z —> [ Network] @

A

 ldentity:
y log p(z) |= /q(z) log p(x)dz G(z) =x  Mean of Gaussian
Evidence po(z | 2)p(2) q(z2)
= [ q(z)log dz
For arbitrary p(z]z) q(2)

otz | [ ogpe | 2z - KLa@IIp)| KL (= | 2)

Evidence Lower Bound (ELBO) KL divergence




VAE and ELBO Do a little math

K Lig(2)[|p(z | z)]

log p(z)|= / 4(2)log po(x | 2)dz — KL{g(2)|Ip(2)]|+

Evidence Evidence Lower Bound (ELBO)
* logp(x) = ELBO (KL divergence > 0)

« We use an encoder network to approximate the posterior

p(x)

KL divergence

_ / g(2|z) log p(= | 2)dz — KL|g(z|z)||p()]

l _ p(,2)
Maximize ELBO => Increase log p(x)  BLBO = /‘1(”"3) log~ i) &
+ Whatiis q(2) ? | =Eulg Ezw))]
If q(2) = p(z|x), KL = 0, logp(x) = ELBO (EM Algorithm) : p(x | 2)p(2)
: .. p(X1Z)p(2)! —/q(ZIﬂf) log ——————dz
Unfortunately, the true posterior p(z|x) is intractable, p(z|x) = B q(z|x)

qp(zlx) = N (z; u(x), 2(x))

______________________________

« By replacing g(z) with g(z|x), maximizing ELBO not only minimizes KL but also approximates MLE

B lozp(@) | [ as(=l0) logpo(a | 2)d= — KLlgs(=10)||p()

H K Llgy(2[z)|Ip(2 | z)]

» Objective: Ey,(.1z)[logpo(z | 2)] — KL[gs(z | )||lp(2)]



Diffusion e KL
Forward Process i Z w
Diffuse XO Add noise Add noise
Reverse Process X;
Denoise X Denoise AM—»

Diffusion models create data from noise by inverting the forward paths of data towards noise and have emerged
as a powerful generative modeling technique for high-dimensional, perceptual data such as images and videos.



DDPM Denoising Diffusion Probabilistic Model

 Original image x,

T

« Step-by-step decomposition, assuming multiple latent variables, p(zirlzo) := | [ p(at|2:-1)

t=1
Markov chain o —» 1 = 2 — ... = T

« Forward Process with decreasing sequence 1>a;>a;>..>ar >0 ,B;:=1—a;
T, = Vouzi1 + (1 — ap)er, & ~N(0,1), t=1,...,T
Variable substitution / reparameterization trick  p(z:|z:-1) = N (z; vVeuzs-1, (1 — ar)I)
Recursion (Noise &, linear combination of Gaussians still results in a Gaussian)
T, = \/oyuxy + ma, and p(z|zy) = N (zs; vVayzg, (1 — ay)I) 0y
» When T steps are large enough  lim & = T e=0 plzr)—N(O1)

s=1

« How do we reconstruct the image step by step?



DDPM Denoising Diffusion Probabilistic Model

p(xe|zi—1)p(Ts-1)

 Bayes' Rule: p(zi-1|z:) = But we do not know p(x,_1), p(x;)

p(z)
« We know conditional the distribution given x,
p(xg|zs_1)p(ws_1|T0) p(xelxe—1), p(xe—1lx0), p(x¢]x0) are all
P(Ei-1|ze; 20) = (| o) Known Gaussian distributions

: . Va1 1—a 1) 1-
We can easily derive that p(zi—1lz:, z0) =N (mt—l; + ‘/a_ti — &‘:‘* l)a': - 1@1)

« But there's a gap. We can use x; to predict/estimate x,, ||zo — po(z:)||’

pxs_1|xs) =~ p(xs_1|xs, g), where g = pg(x;)
By making a small adjustment, due to o = \/77( — V(1 —a)&)
Predict the noise instead py(z:) = v’_ (z: — /(1 — &) ep(z, 1))

m) Loss:

— l1—a 2
—le — eg(xs, t)||? = - Llle — es(Vayzmy + VI — aye, t)||
t



DDPM Denoising Diffusion Probabilistic Model

I p(zo:1)
1 > Epimyomlaoy |log —————
0g j’}(ﬂ.’:) = Lg(zi.7|ma) | 0g Q'(:ELT|33()):|

_ p(@r) T, po(@i1|)
_ [Eq(zl-T‘En) 10g T
| Hf=1q(:€t|xt l)
p(xr)pe(xo|x1) [T, pe(@:_1|x:)
— [Eq(fﬂlz’l"\fﬂn) 10g T
| G(I1|Erj}Ht:25’($:\fﬂr 1)

—F ] P(JZT)PB(CEMCCJHf:gpe(l'z 1|J5t)
= Lg(zir|oa) |10 T

i q(m1|IU)Hf gti'(fﬂt\fﬂt 1, T0)
= [Eq(fﬂlzT\m:JJ

.lc)gpg(a:ir)pg a:[,|:r,1 4 log ,,H pel(x: 1‘5[3:) ]

331|33() 1o 4 $f|fﬂt 1y Iu)

plEr)pe(xo|x:) po(Ti—1|T4)
:1:1|5I:() +l)gH gl 1| o )qlme |@o)
glxe_1|xa)

= [Eq(zl-T‘En) 10‘"

- p(xr)pa(xo|T1) pa(xi_i|xy)
= Ey@rrlza) 10gw +1“%H g(@e—1[@e.20)glefTT)
L M

- T
—r o plxy)pe(Tolz:) +lo glerfag) 4 log H Polxi_1]Ts)
Aenrleo) |08 T (o tag) ®d(arlz) Ot g e o)

[ ]}(IT Pe I:()|$1 PB Ly 1|Ii)
log——F————— log
q(@y.7|®g) 2 gl |xo) +f£; ° q(xy 1|If Tq)

=E

Po (X, 1|T':
=E log E y |1 E,(eiirzo) |1
al@irloo) 108 Pe(x0|®1)] + Eq(my,r|eo) [0% xﬂx“ ] § M 0 ) [Ug 2@, x“)]

T
p(zT) pelzia|z)
=F log +E It E |
q(@i|zo) [OgPB(I:(]|I1)] q(zT|20) {(g Q(IT‘:E() :| £ (ze,@s—1|xa) [[) (:L‘f I‘It Il])

T

(47)

(48)

(49)

(50)

(51)

= [Eq(ml\zn) [logpg(r,ﬂkcl)] *DKL(Q@TWD) || P(WT Z glze|zo) [DKL%(wt—ﬂmtu ﬂ’n) H PB(CE.*, 1|Cﬁtm (58)

~~
reconstruction term prior matching term denoising matching term

ELBO

Perspective from Latent Variable
Model (like VAE)

MEFTT, XTMEMBLTERE
H% S ELBO 5% loss, &%
losstr N 0 fe L B 5 2 HE 1Y 45
Bl —HHESFLLE trick,
0BT DL AV S EE 7
H L Diffusion gi2 — P EREE
EE R EZIVAE (Hierarchical
IEREATH
BT 2 instead of learnable encoder
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b_t = (beta2 - betal) * torch.linspace(®, 1, timesteps + 1, device=device) + betal https://github.com/Ryota-Kawamura/How-
at=1-b_t

Diffusion-Models-Work/tree/main

ab_t = torch.cumsum(a_t.log(), dim=0).exp()
ab_t[@] =1

perturb_input(x, t, noise):
return ab_t.sqrt() [t, , ] * x + (1 - ab_tI[t, 1).sqrt() * noise

nn_model.train()

for ep in range(n_epoch):
print(f'epoch {ep}')

X,: clean image . £:noise

optim.param_groups[@]['1lr'] = lratex(1-ep/n_epoch)

pbar = tqdm(dataloader, mininterval=2 ) Algorlthm l Tl'ﬂlrllllg
for x, _ in pbar:
optim.zero_grad() 1: repeat
= xetoldevice) 2: xg ~ q(xq) <+~ sample clean image
3: t~ Uniform({1,...,T})
noise = torch.randn_like(x) 4 V 0 I .
t = torch.randint(1, timesteps + 1, (x.shapel@],)).to(device) . €~ J ( 3 ) bl Sample d noise
x_pert = perturb_input(x, t, noise) 5: Take gradient descent step on
= - = 2 - _
A del( t t / timesteps) V{-} |‘|f§ - EH(\H(}':X{} + \,’1 - (.tr4, t)” 1, Ao,... AT
pred_noise = nn_model(x_pert, imesteps 6 .
. until converged P
e \ Noisy image J smaller
loss = F.mse_loss(pred_noise, noise, reduction='sum') / x.shape[@] § Y
print(f'loss: {loss.item ', end="\r") .
loss.backward() Target Noise
optin. step() Noise predictor


https://github.com/Ryota-Kawamura/How-Diffusion-Models-Work/tree/main
https://github.com/Ryota-Kawamura/How-Diffusion-Models-Work/tree/main

DA

INPUT

Noise Noisy
Amount Image

3

14

AS

OUTPUT / LABEL

Noise sample

MOD




Inference

Algorithm 2 Sampling

. xr ~N(0,1)
cfort=T,.....1do
: Iz wN’(O,I)lift > l,elsez=0 sample a noise?!

|
2
3
4: x¢-1 = v,iTt (x; — ﬁm(xt,t)) + o112
5
6

- end for @y, A2, AT

© return xg

Noise
Predicter




Image Generation by Reverse Diffusion (Denoising)

Predicted noise
sample 2

Step 1

Noise
amount:




StOCh a.Stl C i ty Think again about the stochasticity

P(wt—1|’£t,ﬂ30) — N To 1 (o] 1/Bf@+ \/a_t( _at 1) 2., ai 1515I S U Stochastic process
11— 1—ay 1—ay kit 31
o= () = (2 — /(L= a)es(z 1) - bl —
Vay e e
) oo 1fo) ~ N (@ 15—y — e —2g(w1, 1), o1]) AT
Ve T VI e e
1 1-— : ‘ e :
T 1= \/f‘f_ Ty — A—a _af Gﬂ(xtat) + ote Samp“ng f:rom . o
! ViT a distribution ! Perturbing data to noise with a continuous-time stochastic process.
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| rrrere Generate data from noise by reversing the perturbation procedure.



DD I M Denoising Diffusion Implicit Model

________________________________________________

S S b1
p(iﬁt|mt—1) — P(Cﬂt|930) — P(mt—llmt, 5130) — P(ict—1|mt)

[ |
| |
[ |
1 xO \ J xT \ J xO :
: :
[ |

| 1
Forward/Diffuse Reverse/Denoise

————————————————————————————————————————————————

« Training: The loss only relies on p(x¢|xg) \
1—a 11—« 2
Llle — ea(zs, t)||* = - tlle — es(Vayeo + V1 — &g t)|]
t

ay

« Sampling: Each step sampling only relies on p(x;—_1|x;)

Maybe we do not need to set p(x;|x;—1) and assume Markov chain process ?

p(zs|zi1)p(:1|zo)
p(z|zo)

(*) /P($t—1|$t,330)29(37t|$0)d33t = p(zi_1|xo)  (*%)

P($t—1|$t, 5130) =

« Actually we have more distributions p(x;_q|x¢, xo) to satisfy Eq. (xx*)

Undetermined Coefficients k;, A, g, P(Ti—1]T¢, To) = N (24-1; ket + Mo, 07 1)



DD I M Denoising Diffusion Implicit Model

! s WS ) :
: p(xi|@i—1) — p(xi|T) — P(TY_1|28, T0) — D(T4—1|24) I
X0 \ y )] X1 |\ y J X0 :
| . .

! Forward/Diffuse Reverse/Denoise :

\/_330 + v/ (1 — &4)&;, and P($t|$0) N(mta \/@73307 (1 - @t)I)

/P(ﬂ?t—ﬂwt, xO)p($t|$O)d$t — P($t—1|$0) (%) P(wt—1|=’b‘t, $0) = N(iﬁt—l; KtTt + Ao, UfI)
i Bt—l - crf — VOt Bt—l — Uf a,p *E?&E’J%%(%BETJ ST
. — — 3 A == -1 — = ]
solutions e = g AT Ve VB ” RIFOBSH, BRI
: g2 L o Pl )p(zi aleo) !
DDPM: o/ =~ h lp(er-alen@0) = === oS |

.2 . - N o Lok 1o . w1 Remark: ZE455E p(x,_ | ) |&, BAE
© DDIM: o =0  Implicit R EOMEALRY, WEMRAIR, FWMNE | Tl il fhuis oe |

| BAY HEIRER

- Larger covariance: o7 = f3;



DD I M Denoising Diffusion Implicit Model

« Accelerated Generation Process

|
i e el
i Ko p(@ilee) = pl@ialen @) < pl@clz)
: X0 \ y ) X7 |\ . J X0 :
] Forward/Diffuse Reverse/Denoise |
xy = vayxg + v/ (1 — &)&, and p(a|zo) = N (245 /0o, (1 — a)I)
- = 2 2
Given oy @ K= %, A\ = Va1 — @Vétﬂ;l oy p(zi_1|ze, z0) = N(xi_1; ki + Mizg, o7 1)
t i
Suppose that an increasing subsequence of [1,..T]: [T1,..., Ts]
N N e, :
I p(a}Tt‘mU) —>p(m7’t71’w7t7m0) —>p(mTt71|mTt) :
| Xo L xp | ' % :
: Forward/Diffuse Reverse/Denoise !

________________________________________

It is allowed to skip steps! Original 1000 steps, 10 steps per jump => 100 steps, 20 steps per jump => 50 steps



SDE

Forward process in DDPM: z: = Vauzi1 + V(1 — ew)es, & ~ N(0,1), t=1,...,T
i%@?'f*t _ﬂﬁ'f't Tin — T = Fi(xe) At + gt\/E& € N(07 I), At—0

=> SDE: dz = fi(z)dt + gjdw| s W: \Viener process or % MiEg), & REVULEE,
T t BRI IR ERE SR, B8 dw ~ N(0,db)
- Drift coefficient f;(x)dt: RGN FE M Tk

- Diffusion coefficient g.dw:EFBHILENEIENAFET L

— _ 2

. *E%Z%‘zﬁ%ﬁﬁgi p($t+At|$t) =N ($t+At5 T + ft(xt)At, g?AtI) X exp ( ”th—l-At Zt zA.it(ib‘t)AtH )
9i

. BEEERS

P(Tiiat|T G5
p($t|$t+m) _ ( t+ t\ t)P( t)

P($t+At)
( |@irae — z¢ — Fi(z) At
x exp [ —
297 At

— P(Cﬁt+At|$t) exp(logp(a:t) - logp($t+At))

+logp(a1) — logp(a:tw))

At B9%/)\, Taylor expansion: logp(ziiat) = logp(z) + (®irar — x¢) - Vi, log p(xs) +At%10gp($t)



S DE DDPM

IE[E SDE dr = ft(m)dt + gtd'w T = /O o V (1 — at)Et

— 1z — At|?
p(z¢|Tisias) ox exp (— 22 tz filz) A + logp(xt) — logp(frt+m))

29; At 5
logp(il?tJrAt) ~ logp(wt) + (wHAt - fIIt) - Vg, logp(a:t) + Atalogp(mt)
T — X — T) — 2Vztlo ;)| Atl|2
p(zi|z0sar) o exp ( |t at t [ft( t)2 gi g p( t)} | n O(At)), At — 0,0(At) — 0
2g; At
p(rlzea) o exp | e ae — @ — [fe(®:) — g7 Ve, logp(a:) | At]|
t|TtrAt 2gt2At

~ exp ( ||83t —TtirAt T {ft—l—At(CCt—l—At) - 93+Atvmt+m 10gp($t+At)]At ‘2 )

2
it

2 — Toyar = — [Froae(@irar) = 9iracVa. o 108 D(Tr1at)] At + grinrV Ate

1 l -«
Ty = ——— (mt — ¢ eg(a:t,t)) + 0:€

i#5 SDE At — 0, |dz = [f,(z) — g} V. logp:(z)]dt + gdw NG Vi-&
: Bt _ =
L0SS:  Euy z,mp(a:20)i(0) [Hsa(mt, t) — Vg, log p(x:|xo) ||2} Eqpe [Zafat({ — &) |e — ea(Vasmy + V1 — e, t)||2]

Loss A9 S AR B S



SDE and ODE s s

Fokker-Planck 75%& O N — Ao ()] 4 LT .
) LR T R4 75 ) PDE 5:P1(@) = =Va  [f(@)pe(2)] + 6i Ve - Vape(2)

5 FP AREMERTH], JFEIUTRFX Vor &R

%Pt(m) = -V [ (@)pe(z) — _(Qt — o)V a‘:pt(m) T %atsz - Vopi(2)

dz = fi(z)dt + gidw ()

= -V, [(ft(m) — 5(9& —0})V, logpt(m)) pt(m)_ + ;afvz - Vaopi(z)

BANRZIMZA FP 722X T SDE /Y FP 7772

dx = (ft(a:) — ;(gf — 02V, logpt(m)) dt + o dw  (##)

et R (#) IR (##) S Bmarginal distribution p,(x) TE1HE
BIFAEARE A ZE/EIEIERE, 4/ marginal distribution 52£48E

By, FHMJIUAEE (##) W& @SDE: |dz= (ft(fﬂ) - ;(gf +0;)V, logpt(:f:)) dt + o.dw




SDE and ODE s s

dz = (.ft(m) - %(gf —0;)V, logpt(m)) dt +oydw  (##)

What if g, = 0 ?

1
dz = (ft(:c) — 2(9,:2 +02)V, logpt(a::)) dt + oydw

Probability flow ODE
dz = (ft(a:) — %gfvm logpt(:c)) dt Deterministic transform

« Deterministic representation
* ODE Accelerated Solver Algorithm

Remark: The forward process and reverse process of ODE are exactly the same



Score Function

- Connecting gradient with the predicted noise:  a(zi-1la:) = N(ze—1; N - \/a—tee(wut),atl)

In this case, we apply it to predict the true posterior mean of x; given its samples. From Equation 70, we

know that:
q(x¢|xo) = N(ze: Voo, (1 — ay) I)

Then, by Tweedie’s Formula, we have:

E[pa, 2] = Tt + (1 — 1) Va, logp(z:) (131)
vory =z + (1 — ay)Vieg p(x,) (132)
x: + (1 —a;)Viegp(x
2o = 2t ( tz gp(x:) (133)
V O
xy + (1 —a)Viogp(a,) x— /1 - gy
Iy = — = = |[l-lg}
v vV
\\\\\\\\\. [N AV AV ey O o
(1 —a@y)Viegp(x:) = —V1 — aree N s £ 4 ?ﬁ{ o B
Ny S & s o S
. . 0EP\Tt) = — —F—=¢&¢ 2 N NN
* What is Tweedie’s Formula ? V9I=a | A R

NSNS N N NN
~ s




Score FUNCtIoN  tweedic’s Formuta 7%

Tweedie's Formula 1% 88: [F¥191E (posterior mean) o A& MLMAE N _E g 7= 75 2= 3 IAMME Y 3 £t
REEFENEERITE.

\/_$0+\/1—at5, ENN(O,l)

$t|$0 \/_:130 (1 —ay)I M— e/ \HNES:
— 2
Pleden) = Gna - G P |’mtz(_l\ia_at::)oH ) Pl = / placlzo)pleo)dzy

Vp(x:) = /Vp x¢|xo)p(zo)dzg
\/_930

1 ——p(x¢|xp)dz

SRIGER xo NERMERSE

Vp(x:|x
p(zt|zo)p(20) p(xt|x0) =

pli) Vp(e) = [~ i p(a[zo)p(eo)das

1 &
Sloufe = | aop(avledzo = 2 [ aupladeolptan)dzo \V log(ar) = 5 Vple
E[zo|z] = 1 (z¢ + (1 — @)V iog p(zy) )| — Vlog p(z,) = 1 /_ z; — /@y

Vs, = 2@ T Pzdlzo)p(zo)dzo
Qt t t
Liﬁo = 1 (x: — V1 — azeg(ay, t))

87

p(wole:) =




G LI | dan Ce Two ways to inject condition

- Way 1: Classifier-Guidance: Use an unconditional generative model pg (x;—1|x;) (BZiI%IFT)
+ Classifier pg (y|x¢)
. » . 1
Injecting Condition y in the reverse process dz = (ft(a:) X 5(93 +07)V, logpt(:c)) dt + oydw

Vs, logp (e | y) = Vlog (p(zt)ﬁzby()y l zt))

— YIng(mt) + Vlogpy (y | =)

> -

unconditional score classifier gradient

e; = —v1—a;Vlogp(z;) ‘ E(xy,t) = p(x1, 1) —W1 — &;Vy, log py(ylz:)
« IR, REXFIRE, HIETNBEM—ITENRES



G LI | dan Ce Two ways to inject condition

 Way 2: Classifier-Free Guidance (CFG)
BRI

Algorithm 1 Joint training a diffusion model with classifier-free guidance

BT pe(xi_1lxs,y), v = label or @

Require: puncond: probability of unconditional training

1: repeat

2: (x,¢) ~ p(x,c) > Sample data with conditioning from the dataset

3 ¢ + @ with probability puncona > Randomly discard conditioning to train unconditionally €9 ($ta t, y) Oor &€y (.’L‘t, t, @)
4: A~ p(A) > Sample log SNR value

5: e ~N(0,I)

6: Z) = Q)X + O)\€ > Corrupt data to the sampled log SNR value

7: Take gradient step on V ||€s(za, ¢) — €| > Optimization of denoising model

8. until converged

Sampling &(z,t,y) := gz, t,y) — V1 — @V, log py(y|z)
= eo(outsy) — 1V I= GV logpy(oily) — Vo logps(a)) b BEHEIHAEAT
= Ee(mt,t; y) + 7(€G(mt:t7y) - Ee(ﬂft, t, @)) %%%ﬁﬁ%@%’]ﬁg ’
= (L4 v)eo(zs, t,y) — veo (s, t,0)
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Abstract

A central problem in machine learning involves
modeling complex data-sets using highly flexi-
ble families of probability distributions in which
leamning, sampling, inference, and evaluation

JASCHA@ STANFORD.EDU
EAWEISS @ BERKELEY.EDU
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these models are unable to aptly describe structure in rich

On the ther hand, medels that are flexibe can be
‘molded to it structurs in arbitrary data. For
can define models in terms of any (non-negati
p(x) y-dslmg the flexible distibution p(x) = £, where
constant. However, compuing this

Here, we develop an approsch that simulianc-
ously achicves both flexibility and tractabil
The essential ides,

Gestro strcurs in 3 daa dsuibuion trough
an iterative forward diffusion process. We then
learn a reverse diffusion process that restores
structure in duta, yielding a highly flexible and
tractable gencrative model of the data. This ap-
proach allows us 1o rapidly leam, sample from,
and evaluste probabilities in deep generative

with thousands of layers or time steps
as well as 10 compute conditional and posterior
probabilties under the leamed model. We addi-
tionally release an open source reference imple-
mentation of the al

1. Introduction

Historically, probabilistic models suffer from a tradeoff be-
tween two conflicting objectives: ractability wnd flexibil-
iry. Models that are rractable can be analytically evaluated
and casily it to data (¢ g. a Gaussianor Laplace). However,
ilmm./ms of the 32" Iernational Canference on Machine

Learning, Lill, France, 2015, IMLR: W&CP volume 7. Copy.
Fight 2015 by the authoe(s).

mmmlu

o0 constant is generally intractable, Evaluating,
‘or drawing samples from such flexible models typ-

ically requies a very expensive Monte Catlo process,

A variety of analytic approximations exist which amelio-

rate, but do not remove, this tradeoff-for instance mean

field theory and its expansions (T, 1982; Tanaka, 1998),

variational Bayes (Jordan et al, 1999), contrastive divey

KL contraction {Lyu. 2011), propes scoring rules (Gocit-
ing & Raftery, al., 2012), score matching
(Hyviirinen, 2005), picudw]lluellhvvd(l!cug 1975, vay
belief propagation (Murphy et al.
more, No pmm methods ((mshmm B 201
can also be very effecti

1.1, Diffusion probabilistic models
We present a novel way o define probabilistic models that

1. extreme flexibi
2. exact sampling,
Not-pirametric methods can be seen a5 transiioning

smacitly betvesn wasials ad Qo modsls. For e,
wre el wil

in model structure,

data as & mitre of an infinite narmber of Gaussisns.
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Generative Modeling by Estimating Gradi of the
Data Distribution

Yang Song Stefano E:
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Abstract

Weintroduce 8 new geoerative model her samples are produced via lzngevm
dynamics using gradients of the d: estimated with
Bocause erdicat might bo il whe the datareside o how-dimensionsi
‘manifolds, we perturb the data with different levels of Gaussian noise and jointly
estimate the corresponding scores, i.c., the veetor fields of gradients of the per-
tbed das disbion fo all s evels.Fo ampin, we prop a2 socaled
d where we 10 gradually decreasing
vt oy g proceas gets cosct & the daca acifold. Ot Frams:
work allows flexible model architectures, requires no sampling during training or
the use of adversarial methods, and provides a learning objective that can be used
for principled model comparisons. Our models produce samples comparable to
GAR's on MNIST, CelebA and CIFAR.10 datascts, achieving a new stu-of-the-
art inception score of 8.91 on CIFAR-10. Additionally, we demonstrate that our
s leam effective representations via image inpainting experiments.

1 Introduction

Generative models have many applications in machine learning. To list a few, they have been used to
senerai high-idlity images 22, 4], synthesize relisic speech and msic fagaments [47), improve
(24,8), anomalous

data [44), imitation learning [19), P [35]. Recent
progess is mainly driven by two approaches: likelihood-based methods (14, 25, 9, 49] and gencrative
adversarial networks (GAN [13)). The former uses log-likelihood (or a suitable surrogate) as the
training objective, while the latter uses adversarial training to minimize f-divergences [34] or integral
probablity melric 2, 5] betwecn modc) and data distabutions.

Although likelihood-based models and GANs have achieved great success, they have some intrinsic
limitations. For example, likelihood-based models cither have to use specialized architectures o
build a normalized probability model (e.g., autoregressive models, flow models), or use surrogate
losses (e.g., the evidence lower bound used in variational auto-encoders [25), contrastive divergence
in energy-based models [18]) for training. GANs avoid some of the limitations of likelihood-based
‘models, but their training can be unstable due to the adversarial training procedure. In addition, the
GAN objective is not suitable for cvaluating and comparing different GAN models. While other

objectives exist for generative modeling, such as noise contrastive estimation [16] and minimum
probability flow (29], these methods typically only work well for low-dimensional data.

In this paper, we explore a new principle for generative modeling based on estimating the (Stein)
score [29] of the data density, which is the gradicnt of the log-density function with respect 10 the
input dimensions. This is a vector field pointing in the direction where the log data density grows
the most. We use a neural network trained with score mx'cmng 121] 10 leam his vector id from
data. We then p iples using Langevi works by gradually

Preprint. Under review.
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Denoising Diffusion Probabilistic Models
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Abstract
i pr
aclass of latent vari inspired by

P 2

thermodynamics. Our best results are oblained by training on a weighted variational

bound designed l:mrnl.mg a mvel connection between diffusion probabilistc

‘models and and our models nat-

unally admita progressive lossy dccompmmn scheme that can be interpreted as a
CIF;

 obtain an Inception score u(946-ndlxume—of|he—|n FID score of 3.17. On
256x256 LSUN, we obtain sample quality similar to ProgressiveGAN. Our imple-
‘mentation is available at https : //github. con/hojonathanho/diffusion.

1 Introduction

Deep generative models of all kinds have recently exhibited high quality samples in a wide variety
of data modalities. Generative adversarial networks (GANs), autoregressive models, flows, and
variational autoencoders (VAEs) have synthesized striking image and audio samples [12, 25, 3,
55,35, 23, 10, 30, 41, 54, 24, 31, 42), and there have been remarkable advances in energy-based
‘modeling and score matching that have produced images comparable to those of GANs [11, 52].

Figure 1: ‘elebA-HQ 256 x 25
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SCORE-BASED GENERATIVE MODELING THROUGH
STOCHASTIC DIFFERENTIAL EQUATIONS
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Abhishek Kumar Stefano Ermon Ben Poole
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ABSTRACT

Creating noise from data is easy; creating data from noise is generative modeling.
We present a stochastic differential cquation (SDE) that smoothly transforms a
complex data distribution to a known prior distribution by slowly injecting noise,
and a corresponding reverse-time SDE that transforms the prior distribution back
into the data distribution by slowly removing the noise. Crucially, the reverse-
time SDE depends only on the time-dependent gradient field (ak.a., score) of
the perturbed data distribution. By leveraging advances in score-based generative
modeling, we can accurately estimate these scores with neural networks, and
use numerical SDE solvers to gencrate samples. We show that this framework
encapsulates previous approaches in diffusion probabilistic modeling and score-
based gencrative modeling, and allows for new sampling procedures. In particular,
we introduce a predictor-corrector framework to correct errors in the evolution of
the discretized reverse-time SDE. We also derive an equivalent neural ODE that
samplesfrom the same distibuton 3 the SDE. whih enabes exac ikelbood
computation, n addition, ous

conditional generation with an unconditional model, 85 we demonstrate with
experiments on class-conditional gencration, image |npn|n|mg and colorization
Combined with

pestoemancs fc ncondilons inage gneraton oo CIFAR. 10 with an lmpuon
score of 9.89 and FID of competitive likelihood of 3.10 bits/dim, and
demonstrate high idelity ‘cm jon of 1024 x 1024 images for the frst ime from
ascore-based generative model.

1 INTRODUCTION

‘Two successful classes of probabilistic generative models involve scquentially corrupting training
data with slowly increasing noise, and then learning to reverse this corruption in order o form a
generative model of the data. Score matching with Langevin dynamics (SMLD) (Song & Ermon,
2019) estimates the score (i.c., the gradient of the log probability density) at each noise scale, and
then uses Langevin dynamics (o sample from a sequence of decreasing noise scales during generation.
Dy fcion protieslil odatig ODVM) (Sob Dkl t . 2015 Ha sl 2020)

probabilistic
of the functional form uf he reverse discibutions fo make aising tractable. For continuous state

spaces, the g objective implicitly each noise scale. We therefore.
refer to these ther as score-based g

Score-based generative models, and related techniques (Bordes et al., 2017; Gu,u etal, 2017), have
proven effective at generation of images (Song & Ermon, 2019; 2020; Ho et al., 2020), audio (Chen

etal., 2020; Kong et al., 2020), graphs (Niu et al., 2020), and shapes (Cai et al, 2020). However, the

*Work done during an intership at Google Brain.
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DENOISING DIFFUSION IMPLICIT MODELS

Jiaming Song, Chenlin Meng & Stefano Ermon
Stanford University
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ABSTRACT

Denoising diffusion probabilistic models (DDPMs) have achicved high qual-
ity image generation without adversarial training, yet they require simulating a

rkov chain for many steps t produce a sample. To accelerate sampling, we
present denoising diffusion implicit models (DDIMs), a more effcient class of it

plic pr
In DDPMs, the generative process is defined as the reverse of a Markovian diffu-
sion process. We construct  class of non-Maskovian diffusion processes that lead
10 the same training objective, but whose reverse process can be much faster 10
sample from. We empirically demonstrate that DDIMs can produce high quality
samples 10 10 50 faster in terms of wall-clock time compared to DDPMs, al-
low us 10 trade off computation for sample quality, and can perform semantically
meaningful image interpolation directly in the latent space. Our implementation
is available at s ok

1 INTRODUCTION

D6 sl s Bl i W S W s g qmu--, samples in many
ins (K. 0; 62). In terms genera-

149 cosealy exhibits ighes sample q\ulny

2 & Welling, 2

essive models (un ) and normalzing flows (Rezcnde & Mohameh

Di 6. However, me m]ulrt vy specilc chodces in opummmn and m,m-m

in mdetln ‘abilize training ()

)» a0 could fail 10 coves modes f the data disrbution (Zhao

e networks (GANs, Goodc

l!xhsnc ‘models (DDPM. ) s o comionssoce ctworks (NCSN, 5
. with-

out having to perform adversarial taiing. To achicve this. many denoising numzn(odm; models
are trained to denoise samples comupted by various levels of Gaussian noise. Samples are then
produced by a Markov chain which, starting from white noise. progressively denoises it nto an im-
. This gencrative Markov Chain process is cither based on Langevin dynamics (Song & Ermon,
019 or otained by revening a orvarddiffion proces that progresively tums an image nto
noise (Sohl-Dick:

A critical drawback of these models is that they require many iterations 1o produce 4 high quality
sample. For DDPMs, this is because that the generative process (from noise 1o data) approximates
the reverse of the forward diffsion process (from data 1o noise), which could have thousands of

hours to sample SOk images of size 32 x 32 from a DDPM, but less than a minute to do so from
GAN on a Nvidia 2080 Ti GPU. This becomes more problematic for larger images as sampling
S0k images of size 256 x 256 could take nearly 1000 hours oa the same GPU.

o close i lfcieny gap betwose DDPMs 4nd GANs,we preset denlsiog iffson kmplct
models (DDIMs). DDIMs are implicit probabilistic models (11 o yana, 2016)

In Section 3, we generalize the forward diffusion process used by DDPMs, which is Markovian,

1
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Improved Denoising Diffusion Probabilistic Models

Alex Nichol "' Prafulla Dhariwal "'

Abstract

Denoising diffusion probabilistic models (DDPM)
arc a class of gencrative models which have re-
cently been shown to produce excellent sam-
ples. We show that with o few simple modifi-
cations, DDPMs can also achieve competitive log-

kelihoods while maintaining high sample quality,
Additionally, we find that leaming vasiances of
the reverse diffusi Il ling with

(2020) showed extremely good results on the CIFAR-10
(Krizhevsky, 2009) and LSUN (Yu et al,, 2015) datasets, it
is unclear how well DDPMs scale 1o datasets with higher di-
versity such as ImageNet. Finally, while Chen et al. (2020b)
found that DDPMs can efficiently generate audio using a
small number of sampling steps, it has yet to be shown that
the same is true for images.

In this paper, we show that DDPMs can acmwe bog-
‘with other

an order of magnitude fewer forward passes with
a negligible difference in sample quality, wlu:h
is important for the practical deployment of the:
models. We additionally use precision and re.
call w compare how well DDPMs and GANs
cover the target distribution. Finally, we show
that the sample quality and likelihood of these
models scale smoothly with model capacity and
training compute, making them casily scalable.
‘We release our code at https://github, com/
openai fimproved-diffusion.

1. Introduction

Sohl-Dickstein et al. (2015) introduced diffusion probabilis-
tic models, a class of generative models which maich a
data distribution by leaming to reverse a gradual, multi-siep
noising process. More recently, Ho et al. (2020) showed

even on high-diversity datases like ImageNet To more
tightly optimise the variational lower-bound (VLB), we
learn the reverse process variances using a simple reparame-
terization and a hybrid leaming objective that combines the
VLB with the simplified objective from Ho et al. (2020).

We find surprisingly that, with our hybrid objective, our
models obtain better log-likelihoods than those obtained
by optimizing the log-likelihood directly. and discover that
the later objective has much more gradient noise during
raining. We show that a simple importance sampling tech-
nique reduces this noise and allows us (o achicve betier
log-likeliboods than with the hybrid objective

After incorporating leamed variances into our model, we
surprisingly discovered that we could sample in fewer sieps
from our models with very litle change in sample quality.
While DDPM (Ho et al.. 2020) requires hundreds of for-
ward passes to produce good samples, we can achieve good
samples with as few as 0 forward passes, thus speeding

an equivalence between denoising diffusion
models (DDPM) and score based generative models (Song
& Ermon, 2019; 2020), which leam a gradient of the log-
density of the data distribution using denoising score match-
ing (Hyviirinen, 2005). It has recently been shown that this
class of models can produce high-quality images (Ho et al.,
2020; Song & Ermon, 2020; Jolicoeur-Martineau et al.,
2020) and audio (Chen ct al., 2020b; Kong ct al, 2020),
but it has yet to be shown that DDPMs can achieve log-
likelihoods competitive with other likelihood-based models
such as autoregressive models (van den Oord et al., 2016c)
and VAEs (Kingma & Welling, 2013). This raises various
questions, such as whether DDPMs are capable of capturing
all the modes of a distribution. Furthermore, while Ho et al.

“Equal contribution *OpenAL San Francisco, USA. Correspon-
dence 10: <alex@opensi com>, <prafulla@openai com>.

ling for use in practical In parallel 1o
our work, Song et al. (20201) develops  different approach
to fast sampling, and we compare against their approach,
DDIM, in our experiments,
While likelihood is a good metric to compare against other
likelihood based models, we also wanted to compare the
ibution coverage of these models with GANs. We use
the improved precision and recall metrics (Kynkidnniemi
et al., 2019) and discover that diffusion models achieve
much higher recall for similar FID, suggesting that they do
indeed cover a much larger portion of the target distribution.

Finally, since we expect machine learning models to con-
sume more computational resources in the future, we evalu-
ate the performance of these models s we inerease model
sizc and training compute. Similar to (Henighan ot al.,

Improved-diffusion
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Abstract

0 s o ol S Vel Tsae gl gl gk s
the current state-of-the-art generative models. We achieve this
image synthesis by finding a better architecture through a series of xhhlmus Fa
conditional image synthesis, we further improve sample quality with classifier
guidance: a simple, compute-efficient method for trading off diversity for sample
quality using gradients from a classifier. We achieve an FID of 2.97 on ImageNet
x 128, 4.59 on ImageNet 256 x 256, and 7.72 on ImageNet 512 x 512, and
we match s.ga,w deep even withas few as 25 forward pasies s sampic ll
‘inally, we find that classifier
guidance combincs well with uplumphng diffusion models, further improving FID
10.3.85 on ImageNet 512 x 512. We release our code at https: //github. con/
openai/guided-diffusion.

1 Introduction

Figure 1: Selected samples from our best ImageNet 512 x 512 model (FID 3.85)

Over the past few years, generative models have gained the ability o generate human-like natural
language [6], infinite high-quality synthetic images (S, 22, 44) and highly diverse human speech and
ouslc {57, 121, These model can be s In  valey of ways, such & gencrating Images from et
prompts [63, 43] or learning useful feature representations (13, 7). While these models are already

“Equal contribution
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ABSTRACT

Classifier guidance is a recently introduced method o trade off mode coverage
and sample fideliy in conditional diffusion models post training, in the same spirit
as low temperature sampling of truncation in other types of generative models.
Classifier guidance combines the score estimate of a diffusion model with the
gradient of an image classifier and thereby requires raining an image classifier
Sepecae rom the duion model, Il iss he ‘of whether guidance

omed wikoo s clsmifier. We show s gidance Fn be lndeed
per'om\ed by a pure generati 1 classifier: in what we
call classifier-free guidance, we jointly train a Ccodbtons d an ecooditonsl
diffusion model, and
cstmaics (o atin  rade -0 between samplo qualty and diversiy it o Gt
obtained using classifier guidance.

1 INTRODUCTION

have recently rged Iy of g«
del ks (Sohl.
Dickstein et al., 2015; Sﬂng&ann 20I9 Ho et al,, 2020; Son‘tla.\ 2021b; Kingma et al., 2021;
Songetal. 2021a). These g the quality

sorvgrenve modcls with sty KVEPRORUIS B {(Chen cta
2021), and
ctal, 2019) and VOVAE 3 (Razavt et oy
score (Ho et al, 2021; Dhariwal & Nichol, 2021).
Dhariwal & lassifier guidance, iq of
a diffusion model using an extra trained classifier. Prior to classifier guidance, it was not k.,m.
how to generate “low temperature” samples from a diffusion model similar to those produced
truncaied BigGAN (Brock et al. 2019) oflow emperature Glow (Kingma & Dhariwl. mm
naive attempt: of G
added during mmnm sampling. are ineffective (Dhariwal & Nichol, 2021), "Clasifer guidance
instead mixes a diffusion model’s score estimate with the input gradient of the log probability of a

2021; Kong et al.,
BigGAN-decp (Brock

Figure
wn,,m u\:mxm;amunnu f classifier-f starting be left.

A hort version of this paper sppesred in the NeurIPS 2021 Worksbop on Decp Gencrative Models and
Applicaions: hetps //opanreviev.net./pdf 4d~queAKKITbT
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Abstract

Diffusion models have recently been shown 1o
‘generate high-quality synthetic images, especially
when paired with a guidance technique (o trade
off diversity for fidelity. We cxplore diffusion
models for the problem of text-conditional im-
age synthesis and compare two different guid-
ance strategies: CLIP guidance and classifier-free
suidanc. We ind that e Lt i prefrrd by
burnan evaluators for both

their comesponding text prompts.

On the other hand, unconditional image models can syn-
thesize photorealistic images (Brock et al., 2018; Karras
etal, 2019a;b; Ruzavi et al,, 2019), sometimes with enough
fidelity that bumans can't distinguish them from real images
(@hou et al., 2019). Within this line of research, diffusion
models (Sohl-Dickstein etal., 2015; Song & Ermon, 2020b)
have emerged as a promising family of generative models,
achieving state-of-the-art sample quality on a number of
imay benchmarks (Ho et al, 2020; Dhariwal &

tion similarity, and often produces pnnmmn]ulh.
samples. Samples from a 3.5 billion parameter
text-conditional diffusion model using classifier-
free guidance are favored by human evaluators to
those from DALL-E, even when the latter uses
expensive CLIP reranking. Additionally, we find
that our models can be fine-tuned o perform im-
age inpainting, cnabling powerful text-driven im-
age editing. We train a smaller model on a fil-
tered datasct and release the code and weights at
hups://github.com/openai/glide-text2im.

1. Introduction

Images, such as musunu‘m plinling; and photographe,
can ofien be eas ibed using text, but can require
specialized skills und hours of labor to create. Therefore,
atool capable of gencrating realistic images from natural
language can empower humans to ereate rich and diverse
wisual content with unprecedented ease. The ability to edit
images using naturallanguage furtherallows for ilerative re-
finement and i d control, both of which

for real world applications.

Recent text-conditional image models are capable of syn-
thesizing images from free-form text prompts, and can com-
pose unrelated objects in semantically plavsible ways (Xu
etal., 2017; Zhu etal,, 2019; Tao et al,, 2020; Ramesh et al,
2021; Zhang et al, 2021). However, they are not yet able
to generate photorcalistic images that capture all aspects of

contribution. Correspondence 1o alex @ openai, com,
prafulla @ openai com, aramesh@openai.com

5
Nichol, 2021; Ho et al., 2021).

To achieve photorealism in the class-conditional setting,
Dhariwal & Nichol (2021) augmented diffusion models
with efassifier guidance, 3 technique which allows diffusion

ition on a classifier’s labels. The classifier
i first trained on noisy images, and during the diffusion
sampling process, gradients from the classifier are used
to guide the sample towards the label. Ho & Salimans
(2021) achieved similar results without a separately trained
classifier through the use of classifier-free guidance,  form
of guidance that interpolates between predictions from a
diffusion model with and without labels.

Motivated by the lbz].\ty urgu.mmrfumn ‘models to gen-

oot o handis e 1 [uml pmmvu we apply guided
fusion (o the problem of text-conditionsl image synthesi
First, we train a 3.5 billion parameter diffusion model that
uses & text encoder 1o condition on natural langusge de-
scriptons. Next, we compare two tecniques for uiding
on text prompis: CLIP guid:

clic!l er-free guidance. Using human and automated mr
ns, we find that classifier-free guidance yiclds higher-
:(uahly images.

We find that samples from our model generated with
classifier-free guidance are both photorealistic and refleet
a wide breadth of world knowledge. When evaluated by
human judges, our samples are prefemed to those from
DALL-E (Ramesh et al., 2021) 87% of the time when evalu-
ated for photorealism, and 69% of the time when evaluated
for caption similarity.

GLIDE
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Abstract

State-of-the-ant_computer vision systems are
trained to predict a fixed set of

Task-agnostic objectives such as autoregressive and masked
language modeling have scaled across many orders of mag-
itude in comput, model capacity, and daa, siadily -

object categories. This restricted form of super-
vision limits their generality and usability since
additional labeled data is needed 1o specify any
other visual concept. Learning directly from raw
text about images is a promising alterative which
leverages a much broader source of supervision.
We demonstrate that the simple pre-training task
of predicting which caption goes with which im-
age is an efficient and scalable leam SOTA
image representations from scratch on a dataset
of 400 million (image, text) pairs collected from
the internet. After pre-training, natural language
is used to reference learned visual concepts (or
describe new ones) enabling zero-shot transfer
of the model to downstream tasks. We study
the performance of this approach by benchmark-
ing on over 30 different existing computer vi-
sion datasets, spanning tasks such as OCR, ac-
tion recognition in videos, geo-localization, and
many types of fine-grained object classification.
The model transfers non-trivially to most tasks
and is often competitive with a fully supervised
baseline without the need for any dataset spe-
cific training. For instance, we match the
curacy of the original ResNet-50 on ImageNet
zero-shot without needing to use any of the 1.28
million training examples it was trained on. We
mlea.w our code and pre-trained model weights at
tps://github.com/OpenAl/CLIP

1. Introduction and Motivating Work

Pre-training methods which learn directly from raw text

we revolutionized NLP over the last few years (Dai &
Le, 2015; Peters et al., 2018; Howard & Ruder, 2018; Rad-
ford et al., 2018; Devlin et al., 2018; Raffel et al., 2019).

“Equ) omurbuion, OpenAL San Fraecico, CA 94110, USA
Cormespondence to: < {alec. jongwook } @openi

of “text-to-text” as
a standardized input-output inerface (McCann t al. 2018;
Radford ct al,, 2019; Raffel et al., 2019) has cnabled task-
agnostcarchitctues 10 2e7-shot ansfer 1 downsieam
the need heads

o pecifc costomizaion Fagahip sysms ke GPT.3
(Brown ct al., 2020) arc now competitive across mas

with bespoke models while requiring litle 1o no dataset
specific training data.

‘These results suggest that the aggregate supervision acces-
sible to modern pre-training methods within web-scale col-
lections of text surpasses that of high-quality crowd-labeled
NLP datasets. However, in other fields such as computer
vision it s still standard practice to pre-train models on
crowd-labeled datasets such as ImageNet (Deng et a., 2009).
Could scalable pre-training methods which learn directly
from web text result in a similar breakihrough in computer
vision? Prior work is encouraging.

Over 20 years ago Mori et al. (1999) explored improving
content based image retrieval by training a model to pre-
dict the nouns and adjectives in text documents paired with
images. Quattoni t al. (2007) demonstrated it was possi-
ble to learn more data efficient image representations via
‘manifold learing in the weight space of classifiers trained
redict words in captions associated with images. Sti-
vastava & Salakhutdinoy (2012) explored decp represen-
tation learning by training multimodal Deep Boltzmann
Machines on top of low-level image and text tag features.
Joulin et al. (2016) modernized this line of work and demon-
strated that CNNs trained to predict words in image cap-
tions lear useful image representations. They converted
the tile, description, and hashtag metadata of images in the
YFCCI00M dataset (Thomee et al., 2016) into a bag-of-
words multi-label classification task and showed that pre-
training AlexNet (Krizhevsky et al, 2012) to predict these
Iabelt learned representations which preformed similarly
(0 ImageNet-based pre-training on transfer tasks. Li et al
tzum then extended this approach to predicting phrase n-
‘grams in addition o individual words and demonstrated the
ability of their system to zero-shot transfer to other image
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Abstract

Contrastive models like CLIP have becn shown to learm robust representations of
images that capture both semantics and style. To leverage these representations for
image generation, we propose a two-stage model: a prior that generates a CLIP
embedding given a text caption, and a decoder that generates an image
condidoned o the lmago embedding. We show that cxplchly peneating image
improves th Toss in
captionsimariy. Our decoders condiioned on image reprsentations ca aho
ariations of an image that presc s semantics ud wle, while
Taryng the 1sabsent from the image
the joint embedding space o CLIP eosbles language-guided image m-nlpu]almm
in a zero-shot fashion. We use diffusion models for the decoder and experiment
with both autoregressive and diffusion models for the prior. finding that the latter
are computationally more efficient and produce higher-quality samples.

1 Introduction

Recent progress in computer vision b scaling models on larg captioned
images collected from the internet [10, 44, 60, 39, 31, 16). Within this framework, CLIP [39] has
emerged a s successful epresenttion learnc for images. CLIP emboddings have a number of
desirable propertics: they are robust shiff, have

and have been fine-tuncd (o achicve state-of-the-art results on a wide vasicty of vision and language
tasks [45]. Concurreatly, diffusion models [46, 48, 25] have emerged as a promising generative
modeling framework, pushing the state-of-the-art on image and video generation tasks (11, 26, 24].
To achieve best results, diffusion models leverage a guidance technique [11, 24] which improves

p y (for images, at the cost of sample y.

In s ek e combl hes o sgunactin G Qe of e gk gl W Rion:
We e s  iffsion decoder o vert the CLIP iagn encoder. Oufgverter i non deermiisi.
and can produce multpl images corresponding o a given image cmbedding. The prescnce of
2 cocodie st for capablh\ ag

translation. As in GAN inversion [62, 55}
cally simiar output images (Figure ). Wo ean also nterpolte Botwocn mpn mages by inverting.
interpolations of their image embeddings (Figure 4). However, one notable advantage of using the
CLIP latent space is the ability to semantically modify images by moving in the dircction of any
encoded text vector (Figure ), whereas discovering these dircctions in GAN latent space involves
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Photorealistic Text-to-Image Diffusion Models
with Deep Language Understanding
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Abstract
We present Imagen, a ‘model with
of photorealism and a decp level of language understanding. Imagen s on
the power of large \ge models in text and hinges

on the strength of diffusion models in high-f ﬁdrlny fmago psaeatln. O by
discovery i that generic large language models ( etrained on text-only
corpore, e srprtingy eflective o cocoding Yt fo e sythels: Inceasing
the size of the language model in Imagen boosts both sample fidelity and image-
text alignment much more than increasing the size of the image diffusion model.
Imagen achieves a new state-of-the-art FID score of 7.27 on the COCO dataset,
and human raters find Imagen samples to be on par
h the COCO data itself in image-text alignment. To assess text-to-image models
in greater depth, we introduce DrawBench, a comprehensive and challenging

‘enchmark for text-to-image models. With DrawBench, we compare Imagen with
recent methods including VQ-GAN4CLIP, Latent Diffusion Models, GLIDE and
that human raters prefer Imagen over other models in side-by-
side comparisons, both in terms of sample quality and isaage-textsigamen.See
imagen. research. google for an overview of the res

1 Introduction

Multimodal learning has come into prominence recently, with text-to-image synthesis [53, 12, 57]

image-text contrastive learning (49, 31, 74] at the forefront. These models have transformed
the rescarch community and captured widespread public atiention with creative image generation
22, 54] and editing applications (21, 41, 34]. To pursue this rescarch direction further, we introduce
Imagen, a text-to-image diffusion model that combines the power of transformer language m
(LMs) [15, 52) with high-fidelity diffusion models (28, 29, 16, 41] to deliver an unprecedented
degree of photorcalism and a decp level of language understanding in text-to-image synthesis. In
contrast to prior work that uses only image-text data for model training [¢.g., 53, 41], the key finding
behind Imagen is that text embeddings from large LMs [S2, 1], pretrained on text-only corpora, are
remarkably effective for text-to-image synthesis. See Fig. 1 for select samples.

Imagen compriscsa rozcn TS-XXL $2) cncoder to map input txt o asequence of cmbeddings
and a 64x64 1, foll generating
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Stable Diffusion
High-Resolution Image Synthesis with Latent Diffusion Models
LAION-5B: An open large-scale dataset for training

next generation image-text models
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High. Image with Latent Models Stability Al and Runway

Robin Rombach' *  Andreas Blaumann' © Doy

k Lorenz' Patrick Esser™  Bjorn Ommer’

arXiv:2112.10752v1 [cs.CV] 20 Dec 2021

; ” s . e . SLndwig Masimlian vty of Musich & TWR, Helebeg Univesiy, Germany PRty ML - Comlk Lorens,
Robis Rombach . . Andredd Blttmant Dodiinik Loreirz._ Pitrick Eiaer -, . B} Ommier https://github.com/CompVis/latent-diffusion
Luduig Moimilian Uiy of Mnich & IWR, Hedelber University, Germry  mvey ML
https://github.com/CompVis/lat usion Christoph Schubmann' §§°*  Romain Beaumont! §§°°  Richard Vencu'** §§°*
Cade Gordon” §§°°  Ross Wightman'§§  Mehdi Cherti ' '°§§ Al o BACCE VAN
Theo Coombes' ~ Aarush Katta'  Clayton Mullis'  Mitchell Wortsman® bstract o T e e e Vi
Abstract Patrick Schramowski' **  Srivatsa Kundy ' ‘rowson’ **

By decomposing the image formation process into a se-
quential application of denoising autoencoders, diffusion
models (DMs) achieve state-of-the-art synthesis results on
image data and beyond. Additionally, their formulation al-
lows for a guiding mechanism to control the image gen-
eration process without retraining. However, since these
models typically operate directly in pixel space, optimiza-

ations. To enable DM training on limited compuiational

csources while retaining their quality and flexibility, we
apply them in the latent space of powerful pretrained au-
toencoders. In contrast 10 previous work, training diffusion
models on such a representation allows for the first time
10 reach a near-optimal point benween complexity reduc-

Figure 1. Boosting the upper bound on achievable quality with
less agressive downsampling. Since diffusion models offer excel.

o

‘can still greatly redice the dimensionality of the data via suitable
‘autocncoding models, s Sec. 3. Images are from the DIV2K (1]

By introducing cross-attention layers into the model archi-
tecture, we turn diffusion models into powerful and flexible
senerators for general conditioning inpus such as fext or

s uated at 512° px. We denote the spatial down-
sampling factor by /. Reconstruction FIDs [26] and PSNR are
calculated on ImageNet-val. 1 1]: see also Tab. 1.

deaisiagauocacoders have s 1 v impresive
7,40} and beyond

(LDMs) achieve a new state of the art for image inpaini-
ing and highly competitive performance on various tasks,
including unconditional image generation, semantic scene
symihesis, and super-resolution, while significantly reducing
computational requirements compared 1o pixel-based DMs.

1. Introduction
Image synthesis is one of the computer vision felds with
ular recent development, but also among
those with the greatest computational demands.  Espe-
cially high-resolution synthesis of complex, natural scenes

is preseatly
s, potentialy containing billions of parameters in sutore-
formers

gressive (AR) transfc contrast, the promis-
ing results of GANs [ have been revealed to be
variability

and d:ﬁnc the state-of-the-art in class-conditional image

s [14,24] and super-resolution [7]. Morcover,
wesadilonal DM can seadlly b ppted o tsks sch
as inpainting and colorization [50] or stroke-based syn-

iy Rty eploling paruscr diieg ey
model highly complex distributions of nat
billions of parameters as in AR models
ratizing High-Resolution Image Synthesis  DMs
belong 1o the class of likelihood-based models, whose
‘mode-covering behavior makes them pronc 1o spend ex-
cessive amounts of capacity (and thus compute resources)
on modeling imperceptible detals of the data [15,65]. Al-

(] 1o -
dunﬂm

ly
as their adversarial
1o modeling complex, multi-modal distributions. Receatly.
diffusion models [77], which are built from a hierazchy of

“The fisttwo ushers contibuted equally to tis wock.

still computationally demanding. since training am!
Cvisaiog sush & model requies repeiod eneon v
ations (and gradient computations) in the high-dimensional
space of RGB images. As an example, training the most
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Abstract

Groundbreaking language-vision architectures like CLIP and DALL-E proved the
wilit of raining on large amounts of noisy image-text data, without relying on
expensive accurate labels used in standard vision unimodal supervised leaming.
‘The resulting models showed capabilities of strong text-guided image generation
and transfer to de tasks, ll zero-shot clas-
sification with noteworthy out-of-distribution robustn then, large-scale

language-vision models like ALIGN, BASIC, GLIDE, Flnmmgould Imagen made
furher improvements. Study

e daaacacontinag B
size have been made openly available for the broader research community.
To address this lem and democratize research on -scale multi-modal

models, we present LAION-SB - a dataset consisting of 5.85 billion CLIP-filiered
image-text pairs, of which 2.32B contain English language. We show successful

available dataset of this scale. Additionally we provide several nearest nei
indices, an improved web-interface for dataset exploration and subset ‘enulnon
and detection scores for watermark, NSFW, and toxic content detect

1 Introduction

Learning from multimodal data such as text, images, and audio is 2 longstanding rescarch challenge
in machine eaming [31, 1, 56, 8, 6], Recenly, contrastie ossfunctons combined with large
capabilities of vision and language
models [S8, 59, s¢| For instance, OpenAl's ot i (58] achieved large gains in zcro-shot
clasifcation on ImageNet [65), improving from the prior top-1 accuracy of 11.5% [41] o 76.2%.
In addition, CLIP achieved ngin
s 3,23, 61,70, 78, 82). Inopred by CLIP b
imagotext models by ncrasing the snonot of conputaion s0d e trining et ze (2854, 189,94]
recent success of multimodal lcarning is in image generation, where DALLE [59) and later

*Project page: bups:// e
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By decomposing the image formation process into a se-
quential application of denoising autoencoders, diffusion
models (DMs) achicve state-of-the-art synthesis results on
image data and beyond. Additionally their formulation al-
lows for a guiding mechanism to control the image gen-
eration process without retraining. However, since these
models typically operate directly in pixel space, optimiza-
tion of powerful DMs often consumes hundreds of GPU
days and inference is expensive due 1o sequential evalu-
ations. To enable DM training on limited computational
resources while retaining their quality and flexibility, we
apply them in the latent space of powerful pretrained au-
1oencoders. In contrast to previous work, training diffusion
models on such a representation allows for the first time
0 rrmh a near-optimal ,mm between complezity reduc-
 fidelity.
By mlmqlucmg cross-attention layers into the model archi-
tecture, we turn diffusion models into powerful and flexi-
ble generators for general conditioning inputs such as text
or bounding boxes and high-resolution synthesis becomes
possible in a convolutional manner. Our latent diffusion
models (LDMs) achieve new state-of-the-art scores for im-
age inpainting and class-conditional image synthesis and
highly competitive ,xrfﬂrmam( on various tasks, includ-

and
tional requivements compared o pixel-based DMs.

1. Introduction
Image synthesis is one of the computer vision ficlds with

muy m;h resolution synthesis of complex, naural scencs

s pr g up
els pﬂ(tnmlly containing billions of parameters in autore-

gressive (AR) transformers [66,67]. In contras, the promis-

ing results of GANs [3, 27, 40] have been revealed to be
‘mostly confined to data with comparably limited variability
as their adversarial learning procedure does not casily scale
to modeling complex, multi-modal distributions. Recently,
diffusion models (2], which are built from a hierarchy of
denoising autoencoders, have shown 10 achieve impressive

“The fest two authors contibuted equally o this work.

Figure 1. Boosting the upper bound on achievable quality with
less agressive downsampling. Since diffusion models offer excel-
pa 3

but
can still greatly reduce the dimensionality of the data via suitable
autoencoding models, see Sec. 3, Images are from the DIV2K [1]
Validation set, evaluated at 5127 px. We denote the spatial down-
sampling factor by f. Recoastruction FIDs (29] and PSNR are
calculated on ImageNet-val. [12]; see also Tab. 5.

resultsin image synthesis (10,45 and beyond [7,45,48,57],
and define the state-of-the-art in class-conditional image
synthesis [15,1] and super-resolution [72]. Moreover, even
unconditional DMs can readily be applied to tasks such
as inpainting and colorization (5] or stroke-based syn-
thesis (53], in contrast to other types of gencrative mod-
els [19,46,69). Being likelihood-bascd models, they do not
exhibit mode-collapse and training instabilities as GANs
and, by heavily exploiting parameter sharing, they can
‘model highly complex distributions of natural images with-
out involving billions of parameters as in AR models [67).
Democratizing High-Resolution Image Synthesis  DMs
belong 1o the class of likelihood-based models, whose
‘mode-covering behavior makes them prone (o spend ex-
cessive amounts of capacity (and thus compute resources)
on modeling imperceptible details of the data [16, 7%]. Al-
mw;hm:rwe.g.w variationalojective (1) sims o d-

are il computationally demanding, since riniog and
evaluating such a model requires repeated function evalu-
ations (and gradient computations) in the high-dimensional

of RGB images. As an example, training the most
powerful DMs often takes hundreds of GPU days (e.g. 150 -
1000 V100 days in [15]) and repeated evaluations on a noisy
version of the input space render also inference expensive,

LDM v2
2022.04

Stable Diffusion is a latent text-to-image diffusion model. Thanks to a generous compute donation from Stabilty Al and support from

LAION, we were able to train a Latent Diffusion Model on §12x512 images from a subset of the LAION-

database. Similar to Google's

Imagen, this model uses a frozen CLIP ViT-L/14 text encoder to condition the model on text promts. With its 850M UNet and 123M text
encoder, the model i relatvely lightweight and runs on @ GPU with at least 10G8 YRAM, See this section below and the mode card

Requirements

A named Lon

conda env create ~f environsent.yasl
conda activate lda

‘You can also update an existing latent diffusion environment by running

conda install pytorch torchvision ~c pytorch

pip install 119.2 diffusers

pip install - .

Stable Diffusion v1

Stable Diffusion v1 refers to a

860M UNet and CLIP ViT-L/14 text encoder for the diffusion model. The model

512x512 images.

@
©
8 autoencoder with an
266x256 images on
d hat present in

Note: Stable Diffusion v1 s a g

its training data. Details on the training procedure and data, as well s the intended use of the model can be found in the corresponding

model card.

‘The weights are available via the CompVis organization at Hugging Face under a license which contains specific use-based restrictions to
but

prevent misuse and harm as informed by

terms of the license, we

and considerations, sinco there are knoun imitations and biases of o weights, N Fooach o s umcar deployment of general
R

The CreativeML OpenRAIL M license is an Open RAIL M license, adapted from the work that BigScience and the RAIL Initative are jointly

carrying in the area of responsible Al licensing. See also.

the article about the BLOOM Open RAIL license on which our license is based.
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VQ-VAE

» Vector Quantized Variational AutoEncoder L

Z¢(z) = ex, where k = argmin,||z.(z) — e;l|2
* sg (stop gradient) L,econ = ||z — decoder(z.(z) + sg(z,(z) — ze(:c)))H;
L. = ||z(z) — 2(2)Il;

- L = Lrecon + aLe

e,ee, e

Embedding
Space

z,(x) ~ q(z|x)

z,0) e 2 z,(x)

Encoder Decoder

Figure 1: Left: A figure describing the VQ-VAE. Right: Visualisation of the embedding space. The
output of the encoder z(z) is mapped to the nearest point e;. The gradient V, L (in red) will push the
encoder to change its output, which could alter the configuration in the next forward pass.

= Le =|[sg(2(x)) — z(2)|]; + Bllze(2) — s9(2(=))I[3

arXiv:1711.00937v2 [cs.LG] 30 May 2018

decoder(z_e + (z_g - z_e).detach())

https://arxiv.org/pdf/1711.00937

Neural Discrete Representation Learning

Aaron van den Oord Oriol Vinyals Koray Kavukeuoglu
DeepMind DeepMind DeepMind
avdnoord@google. com vinyals@google . com korayk@google . com
Abstract

Learning useful representations without supervision remains a key challenge in
machine learning. In this paper, we propose a simple yet powerful generative
model that learns such discrete representations. Our model, the Vector Quantised-
Variational AutoEncoder (VQ-VAE), differs from VAEs in two key ways: the
encoder network outputs discrete, rather than continuous, codes; and the prior
is learnt rather than static. In order to learn a discrete latent representation, we
incorporate ideas from vector quantisation (VQ). Using the VQ method allows the
model to circumvent issues of “posterior collapse” — where the latents are ignored
when they are paired with a powerful autoregressive decoder — typically observed
in the VAE Pairing these ions with an ive prior,
the model can generate high quality images, videos, and speech as well as doing
high quality speaker conversion and unsupervised leamning of phonemes, providing
further evidence of the utility of the learnt representations.

1 Introduction

Recent advances in generative modelling of images [38, 12, 13, 22, 10], audio [37, 26] and videos
[20, 11] have yielded impressive samples and applications [24, 18]. At the same time, challenging
tasks such as few-shot learning [34], domain adaptation [17], or reinforcement learning [35] heavily
rely on learnt representations from raw data, but the usefulness of generic representations trained in
an unsupervised fashion is still far from being the dominant approach.

likelihood and ion error are two common objectives used to train unsupervised
models in the pixel domain, however their usefulness depends on the particular application the
features are used in. Our goal is to achieve a model that conserves the important features of the
data in its latent space while optimising for maximum likelihood. As the work in [7] suggests, the
best generative models (as measured by log-likelihood) will be those without latents but a powerful
decoder (such as PixelCNN). However, in this paper, we argue for learning discrete and useful latent
variables, which we demonstrate on a variety of domains.

Learning representations with continuous features have been the focus of many previous work
[16, 39, 6, 9] however we concentrate on discrete representations [27, 33, 8, 28] which are potentially
a more natural fit for many of the modalities we are interested in. Language is inherenly discrete,
similarly speech is typically represented as a sequence of symbols. Images can often be described
concisely by language [40]. Furthermore, discrete representations are a natural fit for complex
reasoning, planning and predictive leaming (e.g., if it rains, I will use an umbrella). While using
discrete latent variables in deep learning has proven challenging, powerful autoregressive models
have been developed for modelling distributions over discrete variables [37].

In our work, we introduce a new family of ive models ining the

autoencoder (VAE) framework with discrete latent representations through a novel parameterisation
of the posterior distribution of (discrete) latents given an observation. Our model, which relies on
vector quantization (VQQ), is simple to train, does not suffer from large variance, and avoids the

315t Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.
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Condition

1. Cross Attention in UNet

https://arxiv.org/pdf/2112.10752v1
To pre-process y from various modalities (such
as language prompts) we introduce a domain specific en-
coder 7y that projects ¥ to an intermediate representation

2. Different conditioning method
https://arxiv.org/pdf/2212.09748

Scalable Diffusion Models with Transformers

To(y) € RM >4 which is then mapped to the intermediate William Peebles” Saining Xie
layers of the UNet via a cross-attention layer implementing UC Berkeley New York University
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Latent Diffusion Transformer DiT Block with adaLN-Zero DiT Block with Cross-Attention  DiT Block with In-Context Conditioning

where both 7y and ¢y are jointly optimized via Eq. 3. This
conditioning mechanism is flexible as 7y can be parameter-
ized with domain-specific experts, e.g. (unmasked) trans-
formers [©1] when y are text prompts (see Sec. 4.3.1)

Figure 3. The Diffusion Transformer (DiT) architecture. Left: We train conditional latent DiT models. The input latent is decomposed
into patches and processed by several DiT blocks. Right: Details of our DiT blocks. We experiment with variants of standard transformer
blocks that incorporate conditioning via adaptive layer norm, cross-attention and extra input tokens. Adaptive layer norm works best.
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Figure 5. Comparing different conditioning strategies. adalLN-
Zero outperforms cross-attention and in-context conditioning at all
stages of training.

3. MM-DIiT in Stable Diffusion v3
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An Image is Worth One Word: Personalizing

Text-to-Image Generation using Textual Inversion for Subject-Driven Generation

DreamBooth: Fine Tuning Text-to-Image Diffusion Models
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Abstract N
o0
Text-to-image models offer unprecedented freedom to guide creation through naural lan- £l
Phiga: Y, & 1 mackber how s ol spicific <
heir appearance, or compose them in new y:
In other words, we ask: bow can we use language-guided models to turn our cat into & b4]
ting. of imagi bascd on our favorite toy? Hero we pecsent a simple a“ A
approach that allows such creative frecdom. Using only 3-5 images of a user-providk i 8 wirot
concept, like an object or a style, we leam (© represet it through new “words” in the
embedding space of a frozen text-o-image sc “words" can be composed into

natural language seatences, guiding personalized creation in an intuitive way. Notably, we

find evidence that a single word cmbedding is sufficient for capturing unique and vari
mpare our approach 1o a wide range of baselines, and demonsirate that it

‘can more faithfully portray the concepts across a range of applications and tasks

Our code. data and new words will be available at: https://textusl-inversion.

github. io

—_—
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Input images. b X 4 ith iffel Toser

Figure 1: With just a few images (iypically 3-5) of a subject (ief), DreamBooth—our Al-powered photo
an gonerte o myviad of images of the subject indiffren comtets(ight, winthe guidance of 3
The

1
Image credit (input images): Uns
Abstract
Large text-to-image models achieved 3 remarkable leap in the evolution of Al enabling

high-quality and diverse synthesis of images from a given text prompt. However, these
‘model

1s lack the ability to mimic the appearance of subjects in a given reference set and
In this work, .

arXiv:2208.12242v1 [cs.CV]

proach for " of text-to-image 3
3oe0). e s e o G imags of 3 . ws fw-ome & revicd e
image model (Imagen, although our is not limited 10 a specific model) such that
i itrar o bind unique identifier with that specific subject. Once the subject is cmbed-
ded in the oot domain of the model, the e identfer can thea be used 1o )ymhe—
Pige 1 (o) We fd new preado-monds n the embeking ace of o oo kd o dage ol size fully-novel ges of the
b descr ific concepts. (right) These pscudo-words can be composed into new seatences, placing leveraging the
s i s s ,,.\..".f'mi.v..u... loss, ou techoique enables symbesiiog te subjetin divrse eenes,

AS.backpuk”  “Bankay m1of S." A 5. themad hinchbor’

pscu
e bata T o, e, champing Wl 4yl o Componion, o gruiinsthen ks oot st

images. We

hnigue i severa peviously-unssailsbe  tasks,  nchuding sbject reconextuniza:
ot ko view eyt sppes rendering (all while
priourss i eppasios - avidiesstvsityybatoe ey Ll

Preprint. Under review.
* Work was done during an intcraship at NVIDIA

Prepeint. Under review.
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GLIGE!

Yuheng Li*¥, Haotian Li

N: Open-Set Grounded Text-to-Image Generation

', Qingyang Wu®, Fangzhou Mu’, Jianwei Yang®, Jianfeng Gao®,

Chunyuan Li*Y, Yong Jae Lee'Y

'University of Wisconsin-Madison *Columbia University ’Microsoft
https://gligen.github.io/
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Figure 1. Gu
conditions. GLIGEN supports (a) text

el L F

B bl

N enables versatile grounding capabilities for a frozen textto-image generation model, by feeding different grounding
eatity + bos, (b) image entity + bos

x, (c) image style and text + box, (d) text entity + keypoints. The

gencrated cxamples for cach scenatio arc shown in top-left, op-right, bottom-left, and bottom-right, respectively.

Abstract
Large-scale text-to-image diffusion models have made
amazing advances. However, the status quo is 10 use

1. Introduction

Image generation research has witnessed huge advances
in recent years. Over the past couple of years, GANs [14]

text input alone, which can impede ty. In this
work, we propo: GEN, ded-L I
Generation, a novel approach that builds upon and extends
the functionality of existing pre-trained text-1o-image dif-
fusion models by enabling them 10 also be conditioned on
rounding inputs. To preserve the vast concept knowledge of
the pre-trained model, we freeze all of its weights and inject
the grounding information into new trainable layers via a
‘sated mechanism. Our model achieves open-worid grounded
text2img generation with caption and bounding box condi-
tion inputs, and the grounding ability generalizes well to
novel spatial configurations and concepts. GLIGEN's zero-
shot performance on COCO and LVIS ousperforms existing
supervised layout-to-image baselines by a large margin.

§ Purt of the work performed at Microsalt; § Co-semioe authoss

were the f-the ‘with their latent space and con-
ditional inputs being well-studied for controllable manipu-
lation [46, 58] and generation [27,29, 45, 80]. Text condi-
tional autoregressive 50, 72] and diffusion [49, 54] models
have demonstrated astonishing image quality and concept
coverage, due to their more stable learning objectives and
large-scale training on web image-text paired data. These
‘models have gained attention even among the general public
due to their practical use cases (e.g., art design and creation).

Despite exciting progress, existing large-scale text-to-
image generation models cannot be conditioned on other
input modalities apart from text, and thus lack the ability
10 precisely localize concepts or use reference images to
control the generation process. The current input, i.e., nat-
ural language . restricts the way that

GLIGEN
2023.01

[cs.CV] 26 Nov 2023
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Adding Conditional Control to Text-

Image Diffusion Models

Lvmin Zhang, Anyi Rao, and Maneesh Agrawala
Stanford University

Input Canny edge

Inpus human pose Default
Figure 1 Controlling Stable Diffusion with

vmin, anyirao, manaesh}ecs.stanford.edu

] )
“chef in kitchen” “Lincoln statue”

(top), . etc., gencration

. ControlNet like Canny :d;n
default result

B
the prompt “a high-quality, detailed, and professional image”
Abstract

m— present ControlNet, @ neural network architecture to
ld spatial conditioning controls to large. pretrained text-
to-image diffusion models. ControlNet locks the production-
ready large diffusion models, and reuses their deep and ro-
bust encoding layers pretrained with billions of images as a

layers)

the parameters from 2iro and ensure tha 50 harnyel nolse
could affect the finetuning. We test various conditioning con-
1rols, .g., edges, depth, segmentation, human pose, etc., with
Stable Diffusion, using single or multiple conditions, with
or without prompts. We show that the training of Control-
Nets is robust with small (<S0k) and large (>1m) datasets.
Extensive results show that ControlNet may facilitate wider
applications to control image diffusion m

of large
Uterscan optonaltygive prompes e the ~chef n ichea™.
1. Introduction

Many of us have expericnced flashes of visual inspiration
that we wish (0 capture in & unique image. With the advent
of text-to-image diffusion models 54, 62, 72], we can now
create visually stunning images by typing in a text prompt
Yet, text-to-image models are limited in the control they
provide over the spatial composition of the image: precisely
expressing complex layouts, poses, shapes and forms can be
difficult via text prompts alone. Generating an image that
accurately matches our mental imagery often requires nu-

rous trial-and-error cycles of editing a prompt, inspecting
the resulting images and then re-<diting the prompt.

Can we enable finer grained spatial control by letting
users provide additional images that directly specify their

nposition? In computer
learning, these additional images (e.g., edge maps, human
pose skeletons, segmentation maps, depth, normals, efc.)
are often treatcd as conditioning on the image gencration
process. Image-to-image translation models [, 5] learn

ControlNet
2023.02

23

arXiv:2302.08453v1 [cs.CV] 16 Feb 20:

|
https://arxiv.org/pdf/2302.084
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‘T2I-Adapter: Learning Adapters to Dig out More Controllable Ability for
Text-to-Image Diffusion Models
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Zhongang Qi Ying Shan® Xiaohu Qic?
"Peking University Sheazhen Graduate School  “ARC Lab, Tencent PCG Usiversity of Macaw *Sheazhen Institute of Advanced Technology

htt

hub. com/TencentARC/T21-Adapt

“A car with flying wings " "A doll in the shape of letter A’ "

A beautiful girl"

Figure 1. We propose T2I. Adapter, g models while
Thanks 0 the T21-Adapte, we can generate more imaginative resuls
o e gl o dmags mde (- Sl Difion can iy iy generae accrsly (1t row). Vriowsgidanc sch s seich,
canbe used in o8 T2 Adspier

il (0 row) i

T2I-Adapter
2023.02
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I C_ L i g ht {Scaling In-the-Wild Training for Diffusion-Based Illumination Harmonization and

Editing by Imposing Consistent Light Transport )

. . Adding conditional control to text-to-image diffusion models
Author: Lvmin Zhang 7 KZAE] => Stanford {8 Lzneno AReo. uagraaie

Proceedings of the IEEE/CVF International Conference on ..., 2023 - openaccess.thecvf.com

Task: Illumination harmonization and editing Abstract

We present ControlNet, a neural network architecture to add spatial conditioning controls
to large, pretrained text-to-image diffusion models. ControlNet locks the production-ready

D|ff| Culty Prese rV| ng the under|y| ng |mage deta| | S large diffusion models, and reuses their deep and robust encoding layers pretrained with

billions of images as a strong backbone to learn a diverse set of conditional controls. The

and malntalnlng IntrInSIC pl‘OpeI’tIES unchanged heurgl\?rchitecture i; colnnectecliy\/f/ith"' zeroLcon\fglufions"(ge@-initializ?q"convyol‘uticin'. |
Goal: Precise illumination manipulation il

Yo R7F Y9 S| #WEIAXRE: 3036 HBXXE FiE 6 ThRAE o
Method: Impose Consistent Light (IC-Light) transport during training (rooted in physical principle)
Results: Stable and scalable illumination learning, scale up the training of diffusion-based

illumination editing models to large data quantities, reduces uncertainties and mitigates artifacts. ..
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Typical Use Case:
Users give an object
Image and illumination
description, and our
method generates
corresponding object

!

SO

BNV |

“ ... sunlight from the left

appearances and pu W, e npu e
backgrounds. ' :
Challenge:

input “... magic golden lit, forest” input ... neo punk, city night”
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Dataset formation  sresz

In-the-wild image augmentation 3D data (objaverse + renderer) Light stage (one-light-at-time data)

arbitrar random random ; . .
g iany il Ll : appearance albedo normal light1 - light2 ... light N
image shadow  degradation

Common data format for learning light transport consistency

A young woman stands in an
urban environment, with warm
sunlight casting dramatic |
shadows across her face. The
light source comes from a
narrow gap, creating sharp
contrasts between shadows
and highlights ...

appearance environment prompt mask background degradation
I 5 v M B (optional) I;(optional*)



Impose Consistent Light

(a) The vanilla objective will often lead to random model behaviors,
e.g., color mismatch, incorrect details, etc. _
degradation I,

Lyanita = [|€ = 0(e(IL)e,t, L,e(La)) I3 g

(a) In computational photography, light transport theory el,)
demonstrates that, considering arbitrary appearance I; and the ;
correlated environment illumination L, a matrix T always exists
so that I, g scheduler g5+ 0 « L

IL o TL VAE

loss «

Because of this linearity, light transport explains appearance
merging that
It +p, = T(Li+ L) = Ip, + 1L,

(a) Vanilla image-conditioned diffusion

where Ly, L, are two arbitrary environment illumination maps.

This intuitively shows that the mixture of an object’s appearances under separate illuminations (e.g., L1,
L,) is equivalent to the appearance under merged illumination (e.g., Iy 41,)-



Impose Consistent Light

Iy p,=T(Li+Ly)=1Ip +1Ip,

This intuitively shows that
the mixture of an object’s
appearances under separate
illuminations (e.g., Ly, L) IS
equivalent to the appearance
under merged illumination

(€.9. 11, +1,).

BEAEXN—E AR IMNE
Diffusion R KR E®m L7

Scene with illumination A Scene with illumination B
(real photo) (real photo)

Scene with illumination C Blending of real photo A and B Altered Blending with color tone
(real photo) (computed image) (computed image)

Figure 1: Examples for “the linear blending of an object’s appearances under different illumination
conditions is consistent with its appearance under mixed illumination”. Images from OToole (2016).



Impose Consistent Light

I .p, =T(Ly+ Ly) =1I; +1I;  =3%7x images in raw high-dynamic range
1. Image Space: Image => Predicted Noise BRI MXRTINETAHAERFINEMERXR
“Clean image + Noise = Noisy Image” = “Estimated Clean image = Noisy Image — Predicted Noise™

A simple k-diffusion epsilon target at sigma-space step oy, estimated noise €; (conditioned on L), and noisy
image I, , the estimated clean appearance I = (I, —cL)/o

€Li+L, = €L, T €L, = ller, 11, — (€, +€r,)ll3
2. Latent Space: Linear summation relation => MLP mapping ¢

ﬁconsistency — HM O (EL1+L2 — ¢(€L1 ) ELZ))H%

Intuition: Assume mapping f: latent space — 1mage space

flere1,) = fler,) + fler,) = €01, = 77 (f(ELl) T f(ELz)) = €1,+1, = P(€L,,€L,)

3. Implementation of environment illumination maps



Impose Consistent Light

—Ccnusistency - ||M © (f — Qb(&(E(ILI)t: t, Ll: E(Id)))-.« 6(E(IL2 )t-_« t: LE? E(Id)))HQ

Joint learning objective The final learning objective can be written as

L= /\vanillaﬁvanilla + /\consistencyﬁconsistency ,

3. Implementation of
environment
illumination maps

where £ is the merged objective, and we use Ayania = 1.0, Aconsistency = 0.1 as default weights.

degradation I,

&
e(1y)

I & scheduler L, o éi?etp o ¢ L,

Environment

VAE map L

Environment
map L;

Inverted
mask

e L=L+L,

Environment
map Lo

MLP Figure 4: Examples of decomposed environment maps. We present examples to use random masks to

loss <

I decompose environment map I into L; and L. Note that L = Ly + L,. A typical full environment
map is usually of ratio 2:1, with size 64 x 32 when convoluted. We use the front half (facing the image)

of the convoluted environment map, which is 32 x 32. Using the front half makes normal-based

(b) Learning light transport consistency

environment extraction easier (since the image-space normals often do not have any pixels facing to

the back half). Besides, the back halfs of environment maps from DiffusionLight Phongthawee et al.
(2023) are usually not strictly correlated to image contents and can be excluded.



Experiments

 Metric:

PSNR: ETHREZR, HE

SSIM: B3 M B EEGEIUE
LPIPS: ETREZ IR

* Inference: Condition on
(Image © Foreground Mask),
[llumination maps + Text Prompt

Table 1: Quantitative tests of ablative
architectures and alternative methods.

Method PSNR + SSIM+ LPIPS |
SwitchLight 18.45 0.7024  0.3245
DiLightNet 21.78 0.8013  0.1721
w/o LTC 20.32 0.7542  0.1927
w/o aug. data 23.95 0.8723  0.1115
w/o 3d data 22.10 0.8041  0.1298
w/o light stage  23.70 0.8501  0.1077
Ours 23.72 0.8513  0.1025

Input Removing in-the-wild data ~ Removing light transport Full method
consistency

Figure 4: Ablative Study. We present results by removing the light transport consistency or in the
wild data. More results are in the supplementary material. Results in this figure are from Stable
Diffusion 1.5 version of our model. Prompts are “toy in room, studio lighting”, and “a handsome
man, neon city”’.
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removing in-the-wild removing light transport removing in-the-wild removing l‘gght transport
data consistency data consistency

removing in-the-wild removing light transport
data consistency




. Background
*, conditions

Input images

Additional Application

* Background-conditioned Model
(D Training:
“Besides, to train background-conditioned model, we
concatenate B to I; (and fill the extra channel with
all zeros 1f some part of the dataset do not have
backgrounds).”
@) Inference:

(Image ® Foreground Mask), Background
conditions
* Alternative base diffusion models

SD 1.5, SDXL, Flux
* Normal Estimation (Omitted)




Flux-based IC-Light Model with 16ch VAE and native high resolution. See also https://github.com/lllyasviel/IC-Light/discussions/98

Prompt

vintage photograph of a woman. sunshine from window. N O r m a I Ca S e
Z

Initial Latent

None Left Light © Right Light Top Light Bottom Light

= Prefix Quick List

detailed photo of amateur photo of flicker 2008 photo of fantastic artwork of
vintage photograph of Unreal 5 render of surrealist painting of professional advertising design of
= Subject Quick List

aman awoman a handsome man a beautiful woman a monster atoy a product



aces @ lllyasviel iclight-v2 T O like 66 Running on ZERO App I= Files Community

IC-Light V2
g =RZH
S
Flux-based IC-Light Model with 16ch VAE and native high resolution. See also https://github.com/lllyasviel/IC-Light/discussions/98 HIJ 5‘\ 1 Ca Se

I Image X 4 Preprocessed Foreground | & ¥ X

Prompt

detailed photo of Donald Trump and his families, Elon Musk, and many people, sunset over sea

Initial Latent

© None Left Light Right Light Top Light Bottom Light



es @ lllyasviel /iclight-v2 © <like 661  Running on ZERO s App - Files ¢ Community @

IC-Light V2
a7 =
Flux-based IC-Light Model with 16ch VAE and native high resolution. See also https://github.com/Illyasviel/IC-Light/discussions/98 HIJ R tt 55 S Ca Se

A Image x A Preprocessed Foreground

[«
R,
[«
X

Prompt

detailed photo of driveways, next to trees, buildings, and traffic light, afternoon light filtering through trees.

Initial Latent

© None Left Light Right Light Top Light Bottom Light



Preview of the later lecture

s BV BT EMIT

 SDE and ODE

» Score-based Generative Model

« Pseudo Numerical Methods for Diffusion Models on Manifolds : PNMD/PLMS, X3
DDPM B4 240

NG KAF

« Flow Matching

* Rectified Flow

« K& 4 pX upscaling

« 2518 for one-step generation

« Consistency Model
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 Other resources you may refer to:
https://github.com/Fafa-DL/LLhy Machine Learning
https://huggingface.co/docs/diffusers/index

https://jalammar.qithub.io/illustrated-stable-diffusion/
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