Tutorial of Information Geometry

t³-Variational Autoencoder: Learning Heavy-Tailed Data With Student's t and Power Divergence

Xin Gao

2024.4.27

Content

- Preliminary
 - VAE from Joint Minimization insights
 - Information Geometry (IG)
 - Student's t Distribution
- Introduction
- The t³-Variational Autoencoder
- Heavy-tailed distribution experiment

Published as a conference paper at ICLR 2024

 t^3 -Variational Autoencoder: Learning Heavy-Tailed Data with Student's Tand Power Divergence

Juno Kim^{1,2}* Jaehyuk Kwon³* Mincheol Cho³* Hyunjong Lee³ Joong-Ho Won³

 $\verb|junokim@g.ecc.u-tokyo.ac.jp| {jh19984,code1478,hyunjong526}@snu.ac.kr| wonj@stats.snu.ac.kr| wonj@stats.sn$

¹Department of Mathematical Informatics, The University of Tokyo

²Center for Advanced Intelligence Project, RIKEN

³Department of Statistics, Seoul National University

Preliminary VAE Notation Recap

- A VAE models the distribution $p_{data}(x)$ of the observed variable $x \in \mathbb{R}^n$ by jointly learning a stochastic latent variable $z \in \mathbb{R}^m$.
- Generation is performed by sampling z from the prior $p_z(z)$, then sampling x according to a probabilistic **decoder** $p_{\theta}(x|z)$ parametrized by $\theta \in \Theta$.
- The observed likelihood $p_{\theta}(x) = \int p_{\theta}(x|z)p_{Z}(z)dz$ is intractable, so we instead aim to approximate the posterior $p_{\theta}(z|x)$ with a parametrized **encoder** $q_{\phi}(z|x)$ by minimizing their KL divergence. This leads to maximizing **the evidence lower bound (ELBO)** of the log-likelihood, defined as

$$egin{aligned} \mathcal{L}(x; heta,\phi) &:= \log p_{ heta}(x) - \mathcal{D}_{\mathrm{KL}}(q_{\phi}(z|x) \parallel p_{ heta}(z|x)) \ &= \mathbb{E}_{z \sim q_{\phi}(\cdot|x)} \left[\log p_{ heta}(x|z)
ight] - \mathcal{D}_{\mathrm{KL}}(q_{\phi}(z|x) \parallel p_{Z}(z)). \end{aligned}$$

Preliminary From EM to VAE

• The proposal posterior q(z)

$$\log p(x) = \int q(z) \log p(x) dz$$

$$= \int q(z) \log \frac{p(x \mid z)p(z)}{p(z \mid x)} \frac{q(z)}{q(z)} dz$$

$$= \int q(z) \log p(x \mid z) dz - KL(q(z)|p(z)) + KL(q(z) \mid p(z \mid x))$$
ELBO

KL divergence

- In EM: calculate q(z) = p(z|x), KL = 0, max ELBO (= $\log P(x)$)
- In VAE: intractable p(z|x), max ELBO ($\leq \log P(x)$) $\Rightarrow \min KL$
- \Rightarrow Using encoder $q_{\phi}(z|x)$ to approximate p(z|x)

Preliminary VAE from Joint Minimization insights

- Model distribution manifold: $\mathcal{P} = \{p_{\theta}(x, z) = p_{\theta}(x|z)p_{z}(z): \theta \in \Theta\}$
- Data distribution manifold: $Q = \{q_{\phi}(x, z) = p_{data}(x)q_{\phi}(z|x): \phi \in \Phi\}$

(Both finite-dimensional submanifolds of the space of joint distributions)

• The VAE can be reinterpreted as a joint minimization process between two statistical manifolds [1].

$$egin{aligned} D_{ ext{KL}}(q_\phi(x,z) \parallel p_ heta(x,z)) &= \mathbb{E}_{x\sim p_{ ext{data}}} \left[-\log p_ heta(x) + \mathcal{D}_{ ext{KL}}(q_\phi(z|x) \parallel p_ heta(z|x))
ight] - H(p_{ ext{data}}) \ &= -\mathbb{E}_{x\sim p_{ ext{data}}} \left[\mathcal{L}(x; heta,\phi)
ight] - H(p_{ ext{data}}). \end{aligned}$$

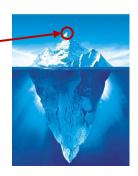
• Minimizing the divergence between points on the model and data distribution manifolds is equivalent to maximizing the expected ELBO.

$$(p_{ heta^*},q_{\phi^*}) = rgmin_{p \in \mathcal{P}, q \in \mathcal{Q}} \mathcal{D}_{\mathrm{KL}}(q \| p).$$

• Can be solved by *em*-projection algorithm on manifolds

Can be substituted by other divergences / statistical families

Information Geometry (1/10)



Brief Introduction

- Information geometry aims to elucidate the geometry of the space of probability distributions.
- Generative models can be understood within the framework of information geometry, where each probability distribution is treated as a point, and different families of probability distributions form different manifolds.

Application

• Applied to diverse research fields including machine learning, signal processing, neuroscience and physics, where probability distribution matters.

Shun-ichi Amari

Information Geometry (2/10)

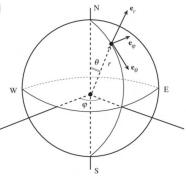
Manifold and Coordinate Systems

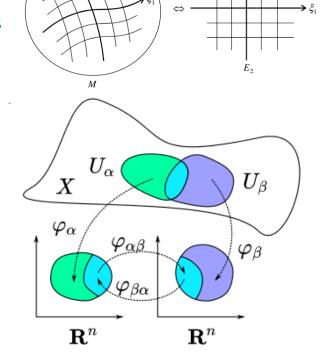
- Manifold: An n-dimensional topological manifold M is a topological Hausdorff space with a countable base which is locally homeomorphic to \mathbb{R}^n . This means that for every point p in M there is an open neighborhood U of p and a homeomorphism $\varphi: U \to V$ which maps the set U onto an open set $V \subset \mathbb{R}^n$.
 - The mapping $\varphi: U \to V$ is called a chart or coordinate system.
 - The image of the point $p \in U$, denoted by $\varphi(p) \in \mathbb{R}^n$, is called the coordinates or local coordinates of p in the chart.
- Statistical manifold [2]: Each point is a probability distribution.

A family of probability distributions $M = \{ p(x, \xi) \}$ specified by a vector

parameter ξ . ξ is the coordinate.

• Example: 2D surface of 3D sphere





Information Geometry (3/10)

Why manifold for probability distributions?

• Space of normal distributions, Coordinate μ , σ^2

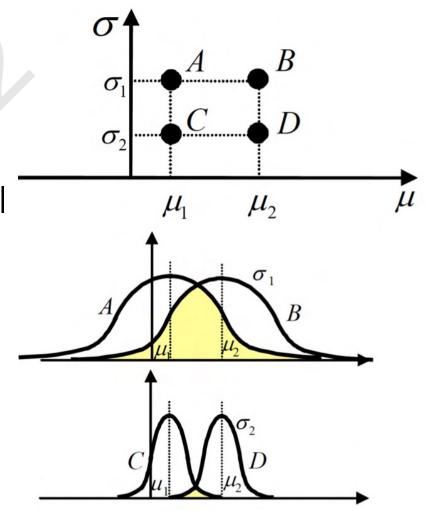
$$p(x) = rac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-rac{(x-\mu)^2}{2\sigma^2}
ight)$$

If a simple Euclidean distance is used, distance |AB| = |CD|But...

distance |AB| and |CD| should not be the same.

A different metric of distance is necessary.

• What is the metric and connection in the manifold of probability distributions?



Information Geometry (4/10)

Divergence and Riemannian Metric

Divergence

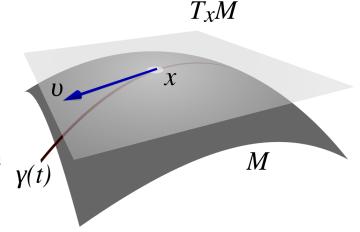
Def. A divergence is a kind of statistical distance: a binary function which establishes the **separation** from one probability distribution to another on a statistical manifold.

- ① Non-negativity ② Positivity ③ $\mathcal{D}(p_{\theta} \parallel p_{\theta+d\theta}) = \frac{1}{2} \sum_{i,j=1}^{d} g_{ij}(\theta) d\theta_i d\theta_j + O(\|d\theta\|^3)$ The dual divergence \mathcal{D}^* is defined as $\mathcal{D}^*(p,q) = \mathcal{D}(q,p)$. Symmetric pos
- → Symmetric positive-definite matrix

Riemannian metric

A divergence D provides M with a Riemannian structure.

Def. Tangent space T_pM at point p, a positive-definite inner product $g_p: T_pM \times T_pM \to \mathbb{R}$. The smooth manifold endowed with this metric g is a Riemannian manifold, denoted (M, g).



Information Geometry (5/10)

Affine Connection and Parallel transport

• An affine connection is a geometric object on a smooth manifold

which connects nearby tangent spaces.

Two nearby tangent spaces T_{ξ} and $T_{\xi+d\xi}$:

$$T_{\xi}$$
 $e_1(\xi), e_2(\xi), ..., e_n(\xi)$

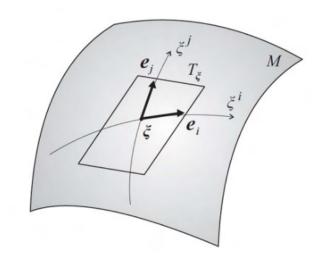
$$T_{oldsymbol{\xi}+doldsymbol{\xi}} \quad e_1(oldsymbol{\xi}+doldsymbol{\xi}), e_2(oldsymbol{\xi}+doldsymbol{\xi}), ..., e_n(oldsymbol{\xi}+doldsymbol{\xi})$$

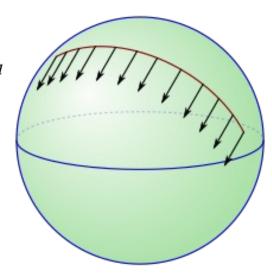
$$oldsymbol{e}_i(oldsymbol{\xi}+doldsymbol{\xi})=oldsymbol{e}_i(oldsymbol{\xi})+\sum_{i}\Gamma_{ki}^joldsymbol{e}_j(oldsymbol{\xi})doldsymbol{\xi}^k$$

• Parallel transport and Geodesic

If the manifold has an affine connection, it enables vector transport along curves to maintain parallelism relative to the connection.

• Tangent vectors along the geodesic maintain the same direction.





Information Geometry (6/10)

Bregman Divergence & Legendre Transformation

• Bregman Divergence from convex function $\,\psi(\xi)\,$

Since ψ is convex, it is always above the hyperplane, touching it at ξ_0 . Hence, it is a supporting hyperplane of ψ at ξ_0

$$D_{\psi}\left[oldsymbol{\xi}:oldsymbol{\xi}_{0}
ight]=\psi(oldsymbol{\xi})-\psi\left(oldsymbol{\xi}_{0}
ight)-
abla\psi\left(oldsymbol{\xi}_{0}
ight)\cdot\left(oldsymbol{\xi}-oldsymbol{\xi}_{0}
ight)$$

• Legendre Transformation => A dualistic structure

The gradient of $\psi(\xi)$: $\xi^* = \nabla \psi(\xi)$ is the normal vector n, we define a new function of ξ^* by $\psi^*(\xi^*) = \xi \cdot \xi^* - \psi(\xi)$,

and ξ is not free but is a function of ξ^* , $\xi = f(\xi^*)$, which is the inverse function of $\xi^* = \nabla \psi(\xi)$

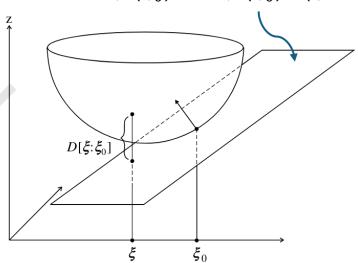
By differentiating $\psi^*(\xi^*)$, we have a dualistic structure

$$oldsymbol{\xi}^* =
abla \psi(oldsymbol{\xi}), \quad oldsymbol{\xi} =
abla \psi^*\left(oldsymbol{\xi}^*
ight).$$

 ψ^* is called the Legendre dual of ψ

 $\psi^*(\boldsymbol{\xi}^*)$ is a convex function, thus a new Bregman divergence is derived from the dual convex function $\psi^*(\boldsymbol{\xi}^*)$, and $D_{\psi^*}\left[\boldsymbol{\xi}^*:\boldsymbol{\xi}^{*\prime}\right]=D_{\psi}\left[\boldsymbol{\xi}':\boldsymbol{\xi}\right].$

$$z = \psi\left(oldsymbol{\xi}_0
ight) +
abla\psi\left(oldsymbol{\xi}_0
ight) \cdot \left(oldsymbol{\xi} - oldsymbol{\xi}_0
ight)$$



Information Geometry (7/10)

Dually flat manifold and structure

- Flat manifold ⇔ Affine coordinate
- Dual affine connections $\Gamma_{ijk}(\boldsymbol{\xi}) = -\frac{\partial^2}{\partial \xi^i \partial \xi^j} \frac{\partial}{\partial \xi'^k} D(\boldsymbol{\xi}||\boldsymbol{\xi}') \quad \Gamma^*_{ijk}(\boldsymbol{\xi}) = -\frac{\partial}{\partial \xi^k} \frac{\partial^2}{\partial \xi'^i \partial \xi'^j} D(\boldsymbol{\xi}||\boldsymbol{\xi}')$

Dual metric condition: $\langle A, B \rangle_{\xi_0} = \langle \Pi A, \Pi^* B \rangle_{\xi_1}$ Π, Π^* : parallel transport using Γ, Γ^*

Theorem. A dually flat manifold S has two special coordinate systems denoted by $\theta = (\theta_1, \dots, \theta_n)$ and $\eta = (\eta_1, \dots, \eta_n)$ such that θ is an affine coordinate system of ∇ -connection and η is an affine coordinate system of ∇ *-connection. There exist two potential functions $\psi(\theta)$ and $\varphi(\eta)$ which are strictly convex, and are connected by the Legendre transformation such that $\psi(\theta) + \varphi(\eta) - \sum \theta^i \eta_i = 0$,

where θ and η are the respective coordinates of the same point. S has a canonical divergence between two points P and Q defined by

$$D[P:Q] = \psi(\boldsymbol{\theta}_P) + \varphi(\boldsymbol{\eta}_Q) - \sum \theta_P^i \eta_{Qi}$$

where θ_P and η_O are respective coordinates of points P and Q.

Information Geometry (8/10)

Example: Exponential Family

$$p(x, \theta)dx = \exp[\theta \cdot x - \psi(\theta)] d\mu(x)$$
 Dually flat manifold

Dual convex functions

$$\psi(\boldsymbol{\theta}) = \log \int \exp(\boldsymbol{\theta} \cdot \boldsymbol{x}) d\mu(\boldsymbol{x})$$
 Free Energy Convex function with respect to $\boldsymbol{\theta}$ $\varphi(\boldsymbol{\eta}) = \int p(\boldsymbol{x}, \boldsymbol{\eta}) \log p(\boldsymbol{x}, \boldsymbol{\eta}) d\boldsymbol{x}$ Entropy Convex function with respect to $\boldsymbol{\eta}$

Dual affine coordinates

$$heta^i = rac{\partial arphi(oldsymbol{\eta})}{\partial n_i} \qquad \qquad \eta_i = rac{\partial \psi(oldsymbol{ heta})}{\partial heta^i} = \int x_i p(oldsymbol{x}, oldsymbol{ heta}) d\mu(oldsymbol{x}) \qquad ext{The expectation of } x$$

Canonical divergence

$$D[m{ heta}_P:m{ heta}_Q]=\psi(m{ heta}_P)+arphi(m{\eta}_Q)- heta_P^i\eta_{Qi}=\int p(m{x},m{ heta}_P)\lograc{p(m{x},m{ heta}_P)}{p(m{x},m{ heta}_Q)}dm{x}$$
 Kullback-Leibler divergence

Fisher information matrix

$$egin{aligned} D\left(p(x,oldsymbol{\xi})||p(x,oldsymbol{\xi}+doldsymbol{\xi})
ight) &= rac{\partial}{\partial oldsymbol{\xi}'^i}D[oldsymbol{\xi}||oldsymbol{\xi}']_{oldsymbol{\xi}'=oldsymbol{\xi}}doldsymbol{\xi}^i + rac{1}{2}rac{\partial^2}{\partial oldsymbol{\xi}'^i\partial oldsymbol{\xi}'^j}D(oldsymbol{\xi}||oldsymbol{\xi}')_{oldsymbol{\xi}'=oldsymbol{\xi}}doldsymbol{\xi}^i doldsymbol{\xi}^j \ &= rac{1}{2}E_{oldsymbol{\xi}}[\partial_i\log p(x,oldsymbol{\xi})\partial_j\log p(x,oldsymbol{\xi})]doldsymbol{\xi}^i doldsymbol{\xi}^j = rac{1}{2}g_{ij}doldsymbol{\xi}^i doldsymbol{\xi}^j \end{aligned}$$

Fisher information metric can be derived from the second derivative of KL divergence.

Information Geometry (9/10)

Generalized Pythagorean Theorem

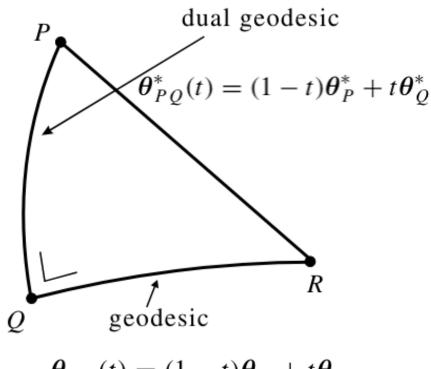
• **Theorem** (Generalized Pythagorean Theorem): When triangle *PQR* is orthogonal such that the dual geodesic connecting *P* and *Q* is orthogonal to the geodesic connecting *Q* and *R*, the following generalized Pythagorean relation holds:

$$D_{\psi}(R:P) = D_{\psi}(Q:P) + D_{\psi}(R:Q).$$

• Dual version: The geodesic connecting P and Q is orthogonal to the dual geodesic connecting Q and R, then

$$D_{\psi^*}(R:P) = D_{\psi^*}(Q:P) + D_{\psi^*}(R:Q).$$

• **Theorem:** The canonical divergence function of a dually flat manifold satisfies the Pythagorean relation, when ∇^* -geodesic connection P and Q is orthogonal at Q to ∇ -geodesic connecting Q and R.



$$\boldsymbol{\theta}_{QR}(t) = (1 - t)\boldsymbol{\theta}_Q + t\boldsymbol{\theta}_R$$

Information Geometry (10/10) em-Projection Theorem

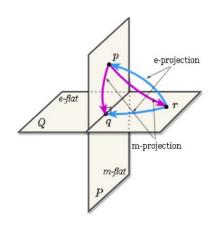
• **Theorem:** Given $P \in M$ and a smooth submanifold $S \subset M$, the point that minimizes the divergence $D_{\psi}[P:R]$, $R \in S$, is the dual geodesic projection of P to S. The point that minimizes the dual divergence $D_{\psi^*}[P:R]$, $R \in S$, is the geodesic projection of P to S.

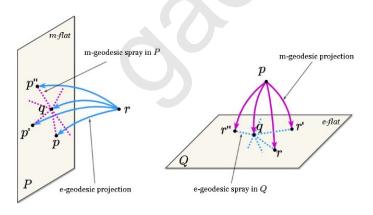
(Dually flat manifold: If exist, then unique)

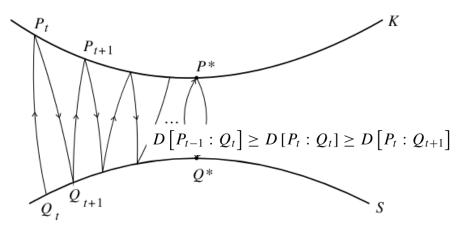
• Divergence Between Submanifolds: Alternating Minimization Algorithm

Two submanifolds K and S in a dually flat M, we define a divergence between K and S by

$$D[K:S] = \min_{P \in K, Q \in S} D[P:Q] = D\left[\bar{P}:\bar{Q}\right].$$







VAE from IG insights

- Model distribution manifold: $\mathcal{P} = \{p_{\theta}(x,z) = p_{\theta}(x|z)p_{z}(z): \theta \in \Theta\}$
- Data distribution manifold: $Q = \{q_{\phi}(x, z) = p_{data}(x)q_{\phi}(z|x): \phi \in \Phi\}$

$$(p_{ heta^*},q_{\phi^*}) = rgmin_{p \in \mathcal{P}, q \in \mathcal{Q}} \mathcal{D}_{\mathrm{KL}}(q \| p).$$

Exponential family with KL divergence is a dually flat manifold, \mathcal{P} and \mathcal{Q} are flat submanifolds. The em-projection theorem guarantees its convergence.

 $\begin{array}{c}Q\\p_d(x)q_\phi(z\mid x)\\ \hline\\P\\p(z)p_\theta(x\mid z)\end{array} \qquad \begin{array}{c}Q\\\phi_2\\ \hline\\\theta_2\theta_1\\ \hline\\\theta_0\end{array} P$

Additionally, this framework readily accommodates

alternative divergences and extends to encompass broader statistical manifolds.

Preliminary Student's t Distribution

- The VAE framework a priori does not require the prior, encoder or decoder to be a particular probability distribution; the usual choice of Gaussian is mainly due to feasibility of the reparameterization trick and closed-form computation of divergence.
- **PDF**: The family of d-variate Student's t-distributions with variable mean μ , scale matrix Σ and fixed degrees of freedom ν

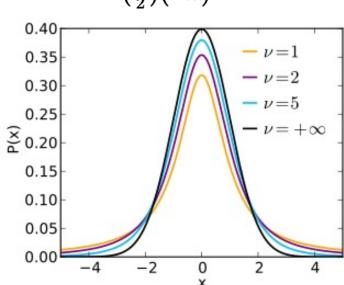
$$t_d(x|\mu,\Sigma,
u) = C_{
u,d} |\Sigma|^{-rac{1}{2}} \left(1 + rac{1}{
u} (x-\mu)^ op \Sigma^{-1} (x-\mu)
ight)^{-rac{
u+d}{2}}, \quad C_{
u,d} = rac{\Gamma(rac{
u+d}{2})}{\Gamma(rac{
u}{2})(
u\pi)^rac{d}{2}}.$$

- Relation with Gaussian distribution $\nu \to \infty$, $\to \mathcal{N}(\mu, \Sigma)$
 - Visualization: Right figure
 - Intuition: $f(x) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \sim \frac{1}{\sqrt{2\pi}}(1 \frac{x^2}{2} + O(x^2))$

$$f(x) = rac{\Gamma(rac{
u+1}{2})}{\sqrt{
u\pi}\Gamma(rac{
u}{2})}(1+rac{x^2}{
u})^{-rac{
u+1}{2}} \sim \sqrt{rac{1+
u}{2\pi
u}}(1-rac{
u+1}{2
u}x^2+O(x^2))$$

• Theoretical proof [3, 4]

(Taylor expansion and Stirling approximation for gamma function)



Preliminary Student's t Distribution

• Moments: For $\nu > 1$, the moments of the t distribution are

$$\mathbb{E}\left\{egin{array}{ll} T^k \end{array}
ight\} = \left\{egin{array}{ll} 0 & k ext{ odd }, & 0 < k <
u, \ & & \
u^{rac{k}{2}} \prod_{j=1}^{k/2} rac{2j-1}{
u-2j} & k ext{ even }, & 0 < k <
u. \end{array}
ight.$$

Moments of order ν or higher do not exit.

$$\mathbb{E}(X) = \nu, for \ \nu > 1$$
; $Var(X) = \frac{\nu}{\nu - 1} \Sigma$, $for \ \nu > 2$, ∞ for $1 < \nu \le 2$

How to generate an RV subjected to student's t distribution?

A multivariate t-distribution $T \sim t_d(\mu, \Sigma, \nu)$ may be constructed from a multivariate centered Gaussian $Z \sim \mathcal{N}_d(0, \Sigma)$ and an independent chi-squared variable $V \sim \chi^2(\nu)$ via

$$T \stackrel{d}{=} \mu + \frac{Z}{\sqrt{V/\nu}}.$$

• **Heavy-tailed distribution:** In probability theory, heavy-tailed distributions are probability distributions whose tails are not exponentially bounded: that is, they have heavier tails than the exponential distribution.

Introduction

Motivation

- Real-world data frequently displays **heavy-tailed** and **imbalanced** patterns.
- The Gaussian prior is too tight to effectively fit complex latent representations; 'over-regularization'.
- Distributing more mass to the tails allows encoded points to spread out easily.

Contribution

- t³VAE: a complete VAE framework that incorporates Student's t-distributions for the prior, encoder, and decoder.
- Experiments: t³VAE effectively models the low-density regions of heavy-tailed datasets and generates high-dimensional images with richer detail.
- Extension: Introducing a hierarchical architecture enables the reconstruction of high-resolution images with enhanced sophistication.

The t^3 -VAE

• γ divergence: $D_{\gamma}(q||p) := \gamma^{-1}C_{\gamma}(q,p) - \gamma^{-1}H_{\gamma}(q)$

$$\mathcal{H}_{\gamma}(p):=-\left\|p
ight\|_{1+\gamma}=-\left(\int p(x)^{1+\gamma}dx
ight)^{rac{1}{1+\gamma}},\quad \mathcal{C}_{\gamma}(q,p):=-\int q(x)\left(rac{p(x)}{\left\|p
ight\|_{1+\gamma}}
ight)^{\gamma}dx$$

• Computing the dual connections yields that the totally Γ^* -geodesic submanifolds consist of power families of the form

$$\mathcal{S}_{\gamma} = \{p_{ heta}(x) \propto (1 + \gamma heta^ op s(x))^{rac{1}{\gamma}} : heta \in \Theta\}.$$

• The family of d-variate Student's t-distributions is Γ^* -geodesic when $\gamma = -\frac{2}{\nu+d}$.

Statistical Manifold	Bregman Divergence	Riemannian metric	Dually flat structure	Flat Submanifold
Exponential family	KL divergence	Fisher information metric	The natural parameters and expectation parameters	Gaussian distribution $p(x, z)$
Power family	γ divergence	$g_{ij}(\theta) = -\frac{\partial^2}{\partial \theta_i \partial \theta'_j} \bigg _{\theta' = \theta} \mathcal{D}_{\gamma}(p_\theta \parallel p_{\theta'})$	$\Gamma_{ij}^{k}(\theta) = -\frac{\partial^{3}}{\partial \theta_{i} \partial \theta_{j} \partial \theta'_{k}} \bigg _{\theta' = \theta} \mathcal{D}(p_{\theta} \parallel p_{\theta'})$ $\Gamma_{ij}^{*k}(\theta) = -\frac{\partial^{3}}{\partial \theta'_{i} \partial \theta'_{j} \partial \theta_{k}} \bigg _{\theta' = \theta} \mathcal{D}(p_{\theta} \parallel p_{\theta'})$	Student t distribution $p(x,z), \ \gamma = -\frac{2}{\nu+d}$

• Define joint distribution $p_{\theta,\nu}(x,z)$ of a power form, parametrized by the degrees of freedom $\nu > 2$ and $\gamma = -\frac{2}{\nu+d}$.

$$egin{aligned} v + d \ p_{ heta,
u}(x,z) \propto \sigma^{-n} \left[1 + rac{1}{
u} \left(\left\| z
ight\|^2 + rac{1}{\sigma^2} \left\| x - \mu_{ heta}(z)
ight\|^2
ight)
ight]^{-rac{
u + m + n}{2}} \end{aligned}$$

• Prior-decoder pair

$$p_{Z,
u}(z)=\int p_{ heta,
u}(x,z)dx=t_m(z|0,I,
u)$$

$$p_{ heta,
u}(x|z) = rac{p_{ heta,
u}(x,z)}{p_{Z,
u}(z)} = t_n\left(x \mid \mu_{ heta}(z), rac{1+
u^{-1}\|z\|^2}{1+
u^{-1}m}\sigma^2 I,
u+m
ight)$$

• When $\nu \to \infty$, $p_{\theta,\nu}(x,z) \to \mathcal{N}(\mu_{\theta}(z), \sigma^2 I)$.

• Since the true posterior z|x is t-distributed with degrees of freedom v+n when the decoder is shallow (Linear layer): $\mu_{\theta}(z) = Wz + b$

$$egin{aligned} egin{aligned} egin{aligned} egin{aligned} x \ z \end{pmatrix} & \propto egin{bmatrix} 1 + rac{1}{
u\sigma^2} egin{pmatrix} x - b \ z \end{pmatrix}^ op egin{bmatrix} I & -W \ -W^ op & W^ op W + \sigma^2 I \end{pmatrix} egin{pmatrix} x - b \ z \end{pmatrix} \end{bmatrix}^{-rac{
u+m+n}{2}} \ & \propto t_{m+n} \left(egin{bmatrix} b \ 0 \end{pmatrix}, egin{pmatrix} WW^ op & + \sigma^2 I & W \ W^ op & I \end{pmatrix},
u
ight). \end{aligned}$$

True posterior

$$z|x \sim t_m(ilde{\mu}(x), ilde{\Sigma}(x),
u+n)$$
 $ilde{\mu}(x) = W^ op(WW^ op + \sigma^2 I)^{-1}(x-b)$

$$ilde{\Sigma}(x) = egin{aligned} rac{1 +
u^{-1}(x - b)^ op (WW^ op + \sigma^2 I)^{-1}(x - b)}{1 +
u^{-1}n} (I - W^ op (WW^ op + \sigma^2 I)^{-1}W). \end{aligned}$$

• We are motivated to incorporate a t-distributed encoder

$$q_{\phi,
u}(z|x) = t_m \left(z \left| \mu_\phi(x), (1+
u^{-1}n)^{-1} \Sigma_\phi(x),
u+n
ight).$$

• When $\nu \to \infty$, $q_{\phi,\nu}(z|x) \to \mathcal{N}(\mu_{\phi}(x), \Sigma_{\phi}(x))$.

• From the geometric relationship of γ -power divergence and power families, we are motivated to replace the KL objective in the joint minimization problem with γ -power divergence.

$$(p_{ heta^*,
u},q_{\phi^*,
u}) = rgmin_{p \in \mathcal{P}_
u,q \in \mathcal{Q}_
u} \mathcal{D}_\gamma(q \parallel p)$$

where γ is coupled to ν as $\gamma = -\frac{2}{\nu + n + m}$.

• γ - loss

The γ -power divergence from $q_{\varphi,\nu} \in Q_{\nu}$ to $p_{\theta,\nu} \in P_{\nu}$ can be computed in closed-form after an approximation of order γ^2 .

$$egin{aligned} \mathcal{L}_{\gamma}(heta,\phi) &= rac{1}{2}\mathbb{E}_{x\sim p_{ ext{data}}}\left[rac{1}{\sigma^2}\mathbb{E}_{z\sim q_{\phi,
u}(\cdot|x)}\left\|x-\mu_{ heta}(z)
ight\|^2
ight] \ &+ \left\|\mu_{\phi}(x)
ight\|^2 + rac{
u}{
u+n-2}\operatorname{tr}\Sigma_{\phi}(x) - rac{
u C_1}{C_2}\left|\Sigma_{\phi}(x)
ight|^{-rac{\gamma}{2(1+\gamma)}} \end{aligned}$$

$$\text{for constants} \quad C_1 = \left(\frac{\nu + m + n - 2}{\nu + n - 2}\left(1 + \frac{n}{\nu}\right)^{\frac{\gamma m}{2}}C_{\nu + n, m}^{\gamma}\right)^{\frac{1}{1 + \gamma}} \quad \text{and} \quad C_2 = \left(\frac{\nu + m + n - 2}{\nu - 2}\sigma^nC_{\nu, m + n}^{-1}\right)^{-\frac{\gamma}{1 + \gamma}} \quad .$$

Alternative prior and balance weight

- Analogously to the ELBO, the γ -loss consists of an MSE reconstruction error and additional terms which act as a regularizer.
- In fact, the remaining terms are equivalent (up to constants) to the γ -power divergence from the posterior $q_{\varphi,\nu}(z|x)$ to **the alternative prior**:

$$p_{
u}^{\star}(z) = t_m \left(z | 0, au^2 I,
u + n
ight); \quad au^2 = rac{1}{1 +
u^{-1} n} \left(\sigma^{-n} C_{
u,n} (1 + rac{n}{
u - 2})^{-1}
ight)^{rac{2}{
u + n - 2}}$$

 γ -loss can then be rewritten as

$$\mathcal{L}_{\gamma}(heta,\phi) = \mathbb{E}_{x\sim p_{ ext{data}}}\left[rac{1}{2\sigma^{2}}\mathbb{E}_{z\sim q_{\phi,
u}(\cdot|x)}\left\|x-\mu_{ heta}(z)
ight\|^{2} + lpha\mathcal{D}_{\gamma}(q_{\phi,
u}\left\|p_{
u}^{\star}
ight)
ight] + ext{const.}$$

Hence, γ -loss can be interpreted similarly as a balance between reconstruction and regularization, and ν controls both the target scale τ^2 and the regularizer coefficient $\alpha = -\frac{\gamma \nu}{2C_2}$.

• As $\nu \to \infty$, t³VAE converges to the Gaussian VAE. As $\nu \to 2$, in theory both $\tau, \alpha \to 0$ so that regularization vanishes and t³VAE regresses to a raw autoencoder.

Equivalence to the Bayesian Hierarchical Model

• Prior-decoder pair

$$p_{Z,
u}(z) = \int p_{ heta,
u}(x,z) dx = t_m(z|0,I,
u)$$
 $z \sim \int_0^\infty \mathcal{N}_m \left(z \left| 0, rac{1}{
u^{-1}\lambda} I
ight) \chi^2(\lambda|
u) d\lambda \propto \left(1 + rac{1}{
u} \left\| z
ight\|^2
ight)^{-rac{
u+m}{2}}$ $p_{ heta,
u}(x|z) = rac{p_{ heta,
u}(x,z)}{p_{Z,
u}(z)} = t_n \left(x \mid \mu_{ heta}(z), rac{1+
u^{-1} \|z\|^2}{1+
u^{-1} m} \sigma^2 I,
u+m
ight)$ $x|z \sim \int_0^\infty \mathcal{N}_n \left(x \left| \mu_{ heta}(z), rac{1}{
u^{-1}\lambda} \sigma^2 I
ight) \mathcal{N}_m \left(z \left| 0, rac{1}{
u^{-1}\lambda} I
ight) \chi^2(\lambda|
u) d\lambda$ $x \sim t_n \left(x \left| \mu_{ heta}(z), rac{1+
u^{-1} \|z\|^2}{1+
u^{-1} m} \sigma^2 I,
u+m
ight)$

• It is then straightforward to add any number of latent layers $z_i|z_{< i}$, $\lambda \sim \mathcal{N}_{m_i}(z_i|\mu_{\theta}(z_{< i}), v\lambda^{-1}\sigma_i^2 I)$ to obtain a heavy-tailed hierarchical prior (z_1, \dots, z_L) .

Heavy-tailed distribution experiment

- The Fréchet inception distance (FID) score (Heusel et al., 2017) is employed to evaluate image quality.
- The images in Figure 3 display rare feature combinations.
- The top left image belongs to the intersection of the Male and Heavy Make-up classes, which constitute around 1% of all images.

Table 2: Reconstruction FID scores of CelebA and CIFAR100-LT. In CelebA, both overall scores and selected classes are shown. Bald, Mustache (Mst), and Gray hair (Gray) are rare classes (less than 5% of the total), while No beard (No Bd) is common (over 50%). In CIFAR100-LT, FID is measured varying imbalance factor ρ . Complete results of tuning each model are included in Appendix C.3.

1 1	0 1	1 1	
91	Cel	α	hΔ
a_{I}			DD

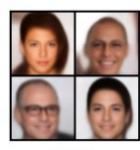
Framework	All	Bald	Mst	Gray	No Bd
t^3 VAE ($\nu = 10$)	39.4	66.5	61.5	67.2	40.1
VAE	57.9	85.8	79.7	91.0	58.4
VAE ($\kappa = 1.5$)	73.2	105.3	96.4	114.5	73.8
β -VAE ($\beta = 0.05$)	40.4	69.3	62.7	71.1	40.9
Student-t VAE	78.4	112.0	104.2	118.7	78.6
DE-VAE ($\nu = 5$)	58.9	89.6	84.3	94.9	59.1
Tilted VAE ($\tau = 50$)	42.6	73.0	65.4	73.7	42.9
FactorVAE ($\gamma_{tc} = 5$)	59.8	91.7	85.7	95.2	60.8

(b) CIFAR100-LT

Framework	$\rho = 1$	10	50	100
t^3 VAE ($\nu = 10$)	97.5	102.8	108.3	128.7
VAE	256.1	267.2	277.4	287.3
VAE ($\kappa = 1.5$)	274.2	290.5	296.7	297.7
β -VAE ($\beta = 0.1$)	114.1	130.4	138.5	160.6
Student-t VAE	259.5	314.1	323.7	333.4
DE-VAE ($\nu = 2.5$)	219.4	250.2	256.7	258.5
Tilted VAE ($\tau = 50$)	101.0	126.1	147.0	193.2
FactorVAE ($\gamma_{tc} = 5$)	232.3	272.5	275.6	270.1

Original

 t^3 VAE



VAE

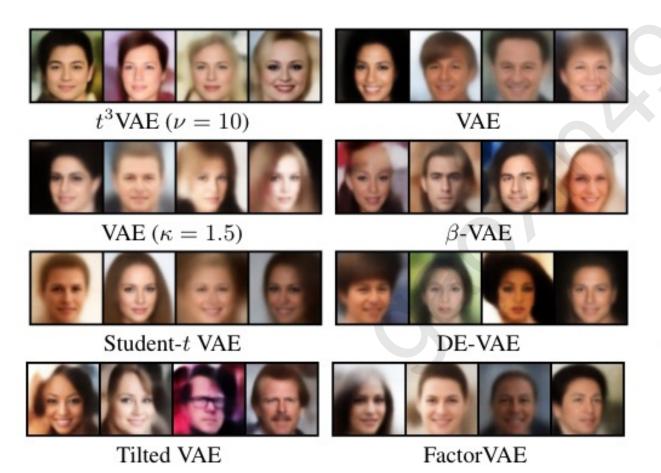
VAE ($\kappa = 1.5$)



Tilted VAE

Heavy-tailed distribution experiment

• Sample from the alternative t-prior $p_{\nu}^{\star}(z)$; more vivid images.



Framework	FID
t^3 VAE ($\nu = 10$)	50.6
VAE	64.7
VAE ($\kappa = 1.5$)	79.6
β -VAE ($\beta = 0.05$)	51.8
Student-t VAE	82.3
DE-VAE ($\nu = 2.5$)	58.9
Tilted VAE ($\tau = 30$)	59.2
FactorVAE ($\gamma_{tc} = 2.5$)	67.0

Table 3: Generation FID scores for CelebA.

◆ Figure 4: Generated CelebA example images.

Heavy-tailed distribution experiment

Higher clarity and sharper detail

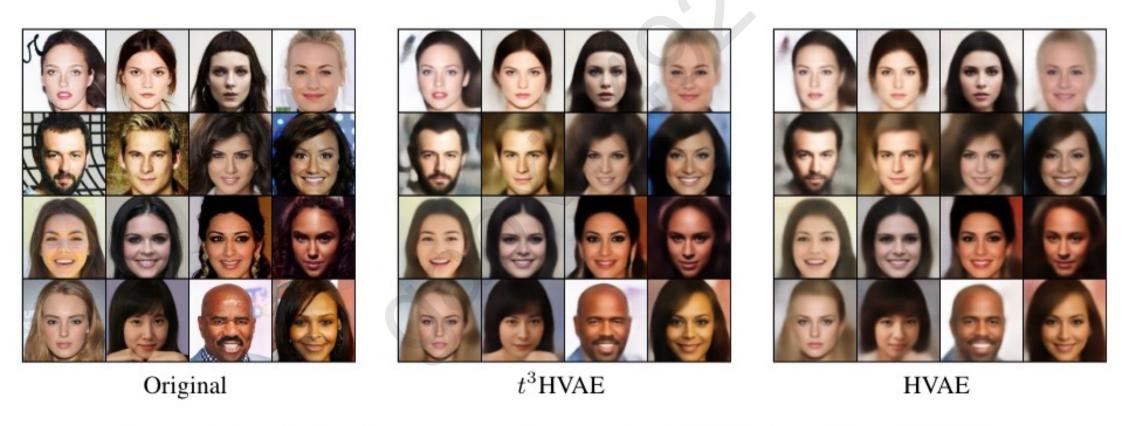


Figure 5: Original and reconstructed images by t^3 HVAE ($\nu = 10$) and HVAE.

References

- [1] Han T, Zhang J, Wu Y N. From *em*-projections to variational auto-encoder[C]//NeurIPS 2020 Workshop: Deep Learning through Information Geometry. 2020.
- [2] Amari S. Information geometry and its applications[M]. Springer, 2016.
- [3] Kotz S, Nadarajah S. Multivariate t-distributions and their applications[M]. Cambridge university press, 2004.
- [4] Dickey J M. Expansions of t Densities and Related Complete Integrals[J]. The Annals of Mathematical Statistics, 1967, 38(2): 503-510.
- [5] Amari S. Information geometry and its applications: Convex function and dually flat manifold[C]//LIX Fall Colloquium on Emerging Trends in Visual Computing. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008: 75-102.
- Other resources you can refer to:

Frank Nielsen | Information Geometry, divergences, and diversities | Geometric Science of Information

Manifolds: A Gentle Introduction