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Preliminary  VAE Notation Recap

• A VAE models the distribution 𝑝!"#"(𝑥) of the observed variable 𝑥 ∈ ℝ$ by jointly learning a 
stochastic latent variable 𝑧 ∈ ℝ%. 

• Generation is performed by sampling 𝑧 from the prior 𝑝&(𝑧), then sampling 𝑥 according to a 
probabilistic decoder 𝑝'(𝑥|𝑧) parametrized by 𝜃 ∈ Θ. 

• The observed likelihood 𝑝' 𝑥 = ∫𝑝' 𝑥 𝑧 𝑝& 𝑧 𝑑𝑧 is intractable, so we instead aim to 
approximate the posterior 𝑝' 𝑧 𝑥 with a parametrized encoder 𝑞( 𝑧 𝑥 by minimizing their 
KL divergence. This leads to maximizing the evidence lower bound (ELBO) of the log-
likelihood, defined as
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Preliminary  From EM to VAE

• The proposal posterior 𝑞(𝑧)

• In EM: calculate 𝑞 𝑧 = 𝑝(𝑧|𝑥), 𝐾𝐿 = 0, max 𝐸𝐿𝐵𝑂	(= log𝑃 𝑥 )

• In VAE: intractable 𝑝(𝑧|𝑥), max 𝐸𝐿𝐵𝑂	(≤ log𝑃 𝑥 ) ⟹ min𝐾𝐿

⟹ Using encoder 𝑞( 𝑧 𝑥  to approximate 𝑝(𝑧|𝑥)

ELBO KL divergence
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Preliminary  VAE from Joint Minimization insights

• Model distribution manifold:  𝒫 = {𝑝' 𝑥, 𝑧 = 𝑝' 𝑥 𝑧 𝑝& 𝑧 : 𝜃 ∈ Θ}

• Data distribution manifold:  𝒬 = {𝑞( 𝑥, 𝑧 = 𝑝!"#" 𝑥 𝑞( 𝑧 𝑥 : 	𝜙 ∈ Φ}

(Both finite-dimensional submanifolds of the space of joint distributions)

• The VAE can be reinterpreted as a joint minimization process between two statistical manifolds [1].

• Minimizing the divergence between points on the model and data distribution manifolds is 
equivalent to maximizing the expected ELBO. • Can be solved by 𝑒𝑚-projection 

algorithm on manifolds
• Can be substituted by other 

divergences / statistical families
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Information Geometry (1/10)
Brief Introduction

• Information geometry aims to elucidate the geometry of the space of probability 
distributions.

• Generative models can be understood within the framework of information geometry, 
where each probability distribution is treated as a point, and different families of 
probability distributions form different manifolds.

Application

• Applied to diverse research fields including machine learning,

   signal processing, neuroscience and physics, where probability

   distribution matters.
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• Manifold: An n-dimensional topological manifold 𝑀 is a topological Hausdorff space with a 
countable base which is locally homeomorphic to ℝ$. This means that for every point 𝑝 in 𝑀 there 
is an open neighborhood 𝑈 of  𝑝 and a homeomorphism 𝜑:𝑈 → 𝑉	which maps the set 𝑈 onto an 
open set 𝑉 ⊂ ℝ$. 
• The mapping 𝜑:𝑈 → 𝑉	 is called a chart or coordinate system.

• The image of the point  𝑝 ∈ 𝑈, denoted by 𝜑(𝑝) ∈ ℝ!, is called the coordinates

    or local coordinates of 𝑝 in the chart.

• Statistical manifold [2] : Each point is a probability distribution.

A family of probability distributions 𝑀 = { 𝑝(𝑥, 𝜉)} specified by a vector 

parameter 𝜉. 𝜉 is the coordinate.

• Example: 2D surface of 3D sphere

Information Geometry (2/10)  
Manifold and Coordinate Systems
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Information Geometry (3/10)  
Why manifold for probability distributions?

• Space of normal distributions, Coordinate 𝝁, 𝝈𝟐

If a simple Euclidean distance is used, distance |𝐴𝐵| = |𝐶𝐷|

But... 

distance |𝐴𝐵| and |𝐶𝐷| should not be the same. 

A different metric of distance is necessary.

• What is the metric and connection in the manifold of 
probability distributions? 
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• Divergence

Def. A divergence is a kind of statistical distance: a binary function which establishes the 
separation from one probability distribution to another on a statistical manifold.

① Non-negativity  ② Positivity  ③ 

• The dual divergence 𝒟∗ is defined as 𝒟∗ 𝑝, 𝑞 = 𝒟(𝑞, 𝑝).

• Riemannian metric

A divergence 𝐷 provides 𝑀 with a Riemannian structure.

Def. Tangent space 𝑇*𝑀 at point 𝑝, a positive-definite inner product

 𝑔*: 𝑇*𝑀×𝑇*𝑀 → ℝ. The smooth manifold endowed with this metric

 𝑔 is a Riemannian manifold, denoted (𝑀, 𝑔).

Information Geometry (4/10) 
Divergence and Riemannian Metric

Symmetric positive-definite matrix
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• An affine connection is a geometric object on a smooth manifold

   which connects nearby tangent spaces.
Two nearby tangent spaces 𝑇+  and 𝑇+,!+:

Divergence 𝒟(·,·) can define an affine connection

• Parallel transport and Geodesic

If the manifold has an affine connection, it enables vector transport along 

curves to maintain parallelism relative to the connection.

• Tangent vectors along the geodesic maintain the same direction.

Information Geometry (5/10) 
Affine Connection and Parallel transport
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Information Geometry (6/10) 
Bregman Divergence & Legendre Transformation
• Bregman Divergence from convex function  𝜓(𝝃)

Since 𝜓 is convex, it is always above the hyperplane, touching it 

at 𝝃𝟎. Hence, it is a supporting hyperplane of 𝜓 at 𝝃𝟎

• Legendre Transformation => A dualistic structure
The gradient of  𝜓(𝝃): 𝝃∗ = ∇𝜓(𝝃)  is the normal vector 𝑛, we define a new function of  𝝃∗ by

and 𝜉 is not free but is a function of  𝝃∗,  𝝃 = f(𝝃∗),  which is the inverse function of  𝝃∗ = ∇𝜓(𝝃)
By differentiating  𝜓∗(𝝃∗)	,  we have a dualistic structure   

𝜓∗(𝝃∗)	 is a convex function, thus a new Bregman divergence is derived from the dual convex function 
𝜓∗(𝝃∗)	, and 

𝜓∗	is called the Legendre dual of	 𝜓ga
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Information Geometry (7/10) 
Dually flat manifold and structure

• Flat manifold ⟺ Affine coordinate
• Dual affine connections

Dual metric condition:

Theorem. A dually flat manifold 𝑆 has two special coordinate systems denoted by 𝜃 = (𝜃#,···, 𝜃$) and 
𝜂 = (𝜂#,···, 𝜂$) such that 𝜃 is an affine coordinate system of ∇-connection and 𝜂 is an affine coordinate 
system of ∇∗-connection. There exist two potential functions 𝜓(𝜽) and 𝜑(𝜼) which are strictly convex, 
and are connected by the Legendre transformation such that

where 𝜽 and 𝜼 are the respective coordinates of the same point. 𝑆 has a canonical divergence between two 
points 𝑃 and 𝑄 defined by

where 𝜽% and 𝜼& are respective coordinates of points 𝑃 and 𝑄.

parallel transport using
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• Dual convex functions

• Dual affine coordinates

• Canonical divergence

• Fisher information matrix

Information Geometry (8/10) 
Example: Exponential Family

𝑝 𝒙, 𝜽 𝑑𝒙	 = exp 𝜽 · 𝒙 − 𝜓 𝜽 𝑑𝜇(𝒙)

Free Energy

Entropy

Convex function with respect to 𝜽

Convex function with respect to 𝜼  

The expectation of 𝑥

Kullback-Leibler divergence

Dually flat manifold

Fisher information metric 
can be derived from the 
second derivative of KL 
divergence.
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• Theorem (Generalized Pythagorean Theorem): When triangle 𝑃𝑄𝑅 is orthogonal such that 
the dual geodesic connecting 𝑃 and 𝑄 is orthogonal to the geodesic connecting 𝑄 and 𝑅, the 
following generalized Pythagorean relation holds:

• Dual version: The geodesic connecting P and Q is orthogonal 

   to the dual geodesic connecting Q and R, then

• Theorem: The canonical divergence function of a dually flat 

manifold satisfies the Pythagorean relation, when ∇∗-geodesic

connection 𝑃 and 𝑄 is orthogonal at 𝑄 to ∇-geodesic 

connecting 𝑄 and 𝑅.

Information Geometry (9/10) 
Generalized Pythagorean Theorem
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Information Geometry (10/10) 
𝒆𝒎-Projection Theorem
• Theorem: Given 𝑃 ∈ 𝑀 and a smooth submanifold 𝑆 ⊂ 𝑀, the point that minimizes the 

divergence 𝐷-[𝑃 ∶ 𝑅], 𝑅 ∈ 𝑆, is the dual geodesic projection of 𝑃 to 𝑆. The point that minimizes 
the dual divergence 𝐷-∗[𝑃 ∶ 𝑅], 𝑅 ∈ 𝑆, is the geodesic projection of 𝑃 to 𝑆.

(Dually flat manifold: If exist, then unique)

• Divergence Between Submanifolds: Alternating Minimization Algorithm

Two submanifolds K and S in a dually flat M, we define a divergence between K and S by 
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VAE from IG insights
• Model distribution manifold:  𝒫 = {𝑝' 𝑥, 𝑧 = 𝑝' 𝑥 𝑧 𝑝& 𝑧 : 𝜃 ∈ Θ}

• Data distribution manifold:  𝒬 = {𝑞( 𝑥, 𝑧 = 𝑝!"#" 𝑥 𝑞( 𝑧 𝑥 : 	𝜙 ∈ Φ}

Exponential family with KL divergence is a dually flat
manifold, 𝒫 and 𝒬 are flat submanifolds. The 𝑒𝑚-projection
theorem guarantees its convergence.

Additionally, this framework readily accommodates 
alternative divergences and extends to encompass broader statistical manifolds.
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Preliminary  Student’s t Distribution

• The VAE framework a priori does not require the prior, encoder or decoder to be a particular probability 
distribution; the usual choice of Gaussian is mainly due to feasibility of the reparameterization trick
and closed-form computation of divergence.

• PDF: The family of 𝑑-variate Student’s t-distributions with variable mean 𝜇, scale matrix Σ and fixed 
degrees of freedom 𝜈

• Relation with Gaussian distribution    𝜈 → ∞, 	 → 𝒩(𝜇, Σ)
• Visualization: Right figure
• Intuition: 

• Theoretical proof [3, 4] (Taylor expansion and Stirling 
approximation for gamma function)
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Preliminary  Student’s t Distribution

• Moments: For 𝜈 > 1, the moments of the t distribution are

Moments of order 𝜈 or higher do not exit.

𝔼 𝑋 = 𝜈, 𝑓𝑜𝑟	𝜈 > 1 ;   𝑉𝑎𝑟 𝑋 = .
./0

Σ, 	𝑓𝑜𝑟	𝜈 > 2, ∞	𝑓𝑜𝑟	1 < 𝜈 ≤ 2

• How to generate an RV subjected to student’s t distribution?
A multivariate 𝑡-distribution 𝑇 ∼ 𝑡!(𝜇, Σ, 𝜈) may be constructed from a multivariate centered 
Gaussian 𝑍 ∼ 𝒩!(0, Σ) and an independent chi-squared variable 𝑉 ∼ 𝜒1(𝜈) via

• Heavy-tailed distribution: In probability theory, heavy-tailed distributions are probability 
distributions whose tails are not exponentially bounded: that is, they have heavier tails than 
the exponential distribution.
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Introduction
• Motivation

• Real-world data frequently displays heavy-tailed and imbalanced patterns.
• The Gaussian prior is too tight to effectively fit complex latent representations; ‘over-

regularization’.
• Distributing more mass to the tails allows encoded points to spread out easily.

• Contribution
• t3VAE: a complete VAE framework that incorporates Student’s t-distributions for the prior, 

encoder, and decoder. 
• Experiments: t3VAE effectively models the low-density regions of heavy-tailed datasets

and generates high-dimensional images with richer detail.
• Extension: Introducing a hierarchical architecture enables the reconstruction of high-

resolution images with enhanced sophistication.
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The t3-VAE
• 𝛾 divergence: 𝐷2(𝑞‖𝑝) ∶= 𝛾/0𝐶2(𝑞, 𝑝) − 𝛾/0𝐻2(𝑞)

• Computing the dual connections yields that the totally Γ∗-geodesic submanifolds consist of 
power families of the form

• The family of d-variate Student’s t-distributions is Γ∗-geodesic when 𝛾 = − 1
.,!

.

Statistical 
Manifold

Bregman 
Divergence

Riemannian metric Dually flat structure Flat Submanifold

Exponential 
family

KL divergence Fisher information metric The natural parameters and 
expectation parameters

Gaussian distribution
𝑝(𝑥, 𝑧)

Power family 𝛾 divergence Student t distribution
𝑝(𝑥, 𝑧), 𝛾 = − "

#$%
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The t3-VAE
• Define joint distribution 𝑝',4(𝑥, 𝑧) of a power form, parametrized by the degrees of freedom 
𝜈 > 2 and 𝛾 = − 1

.,!
.

• Prior-decoder pair

• When 𝜈 → ∞, 𝑝',.(𝑥, 𝑧) → 𝒩(𝜇' 𝑧 , 𝜎1𝐼).
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The t3-VAE
• Since the true posterior 𝑧|𝑥 is 𝑡-distributed with degrees of freedom 𝜈 + 𝑛 when the decoder 

is shallow (Linear layer): 𝜇' 𝑧 = 𝑊𝑧 + 𝑏

• We are motivated to incorporate a t-distributed encoder

• When 𝜈 → ∞, 𝑞(,.(𝑧|𝑥) → 𝒩(𝜇( 𝑥 , Σ((𝑥)).

True posterior

𝑧|𝑥	~	𝑡&( 9𝜇(𝑥), ;Σ 𝑥 , 𝜈 + 𝑛) 
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The t3-VAE
• From the geometric relationship of 𝛾-power divergence and power families, we are motivated 

to replace the KL objective in the joint minimization problem with 𝛾-power divergence.

   where 𝛾 is coupled to 𝜈 as 𝛾 = − 1
.,$,%

.

• 𝜸- loss
The 𝛾-power divergence from 𝑞5,. ∈ 𝑄. to 𝑝',. ∈ 𝑃. can be computed in closed-form after an 
approximation of order 𝛾1.

for constants                                                    and                                               .
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The t3-VAE
Alternative prior and balance weight
• Analogously to the ELBO, the 𝛾-loss consists of an MSE reconstruction error and additional terms 

which act as a regularizer.
• In fact, the remaining terms are equivalent (up to constants) to the 𝛾-power divergence from the 

posterior 𝑞5,.(𝑧|𝑥) to the alternative prior:

𝛾-loss can then be rewritten as

Hence, 𝛾-loss can be interpreted similarly as a balance between reconstruction and regularization, 
and 𝜈 controls both the target scale 𝜏1 and the regularizer coefficient 𝛼 = − 2.

16"
.

• As 𝜈 → ∞, t3VAE converges to the Gaussian VAE. As 𝜈 → 2, in theory both 𝜏, 𝛼 → 0 so that 
regularization vanishes and t3VAE regresses to a raw autoencoder.
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Equivalence to the Bayesian Hierarchical Model
• Prior-decoder pair

• It is then straightforward to add any number of latent layers 𝑧7|𝑧87, 𝜆~𝒩%#(𝑧7|𝜇' 𝑧87 , 𝜐𝜆
/0𝜎71𝐼)

to obtain a heavy-tailed hierarchical prior (𝑧0,· · ·, 𝑧9).
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Heavy-tailed distribution experiment
• The Fréchet inception 

distance (FID) score 
(Heusel et al.,2017 ) is 
employed to evaluate 
image quality.

• The images in Figure 3 
display rare feature 
combinations.

• The top left image 
belongs to the 
intersection of the Male 
and Heavy Make-up 
classes, which 
constitute around 1% of 
all images.
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Heavy-tailed distribution experiment
• Sample from the alternative 𝑡-prior           ; more vivid images.
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Heavy-tailed distribution experiment
Higher clarity and sharper detail
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• Other resources you can refer to:

Frank Nielsen | Information Geometry, divergences, and diversities | Geometric Science of Information

Manifolds: A Gentle Introduction
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https://franknielsen.github.io/IG/index.html
https://bjlkeng.io/posts/manifolds/

