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Preliminary VAE Notation Recap

* A VAE models the distribution p;,:,(x) of the observed variable x € R" by jointly learning a
stochastic latent variable z € R™.

* Generation is performed by sampling z from the prior p,(z), then sampling x according to a
probabilistic decoder py(x|z) parametrized by € 0.

* The observed likelihood py (x) = [ pe(x|2)p;(2)dz is intractable, so we instead aim to
approximate the posterior py(z|x) with a parametrized encoder g, (z|x) by minimizing their

KL divergence. This leads to maximizing the evidence lower bound (ELBO) of the log-
likelihood, defined as

L(z;0,¢) : = logps(z) — Dxr(gs(z|z) || po(2|z))
= E,gy(0) log po(x|2)] — Dxrlgg(z|2) || pz(2)).



Preliminary From Em to VAE

* The proposal posterior q(z)

log p(z) + / q(2) log p(z)d=
_ / o(2)log PE1 2P2) a(2) )

pl2) q(2
+ [ @) bogp(z | 2)dz ~ KL(a(2)lp(e) |+ |KLg(2) | (= | 2)
ELBO KL divergence

* In EM: calculate q(z) = p(z|x), KL = 0, max ELBO (= log P(x))
 In VAE: intractable p(z|x), max ELBO (< log P(x)) = min KL

= Using encoder g4 (z|x) to approximate p(z|x)



Pl‘ehmlnal’y VAE from Joint Minimization insights

* Model distribution manifold: P = {py(x,z) = pg(x|2z)p;(2): 0 € O}
* Data distribution manifold: Q = {q4(x,2z) = Pgara(X)qp(z]x): ¢ € O}

(Both finite-dimensional submanifolds of the space of joint distributions)

» The VAE can be reinterpreted as a joint minimization process between two statistical manifolds [,

D1 (g4(, 2) || po(, 2)) = Eorpy,, [—1logpo(z) + Dxr(gs(2]z) || po(2]2))] — H(Paata)
— _Em"’pdata [E(:C, 0) ¢)] - H(pdata)'

* Minimizing the divergence between points on the model and data distribution manifolds is

ivalent t imizing th ted ELBO.
equivalent to maximizing the expecte + Can be solved by em-projection

B D - algorithm on manifolds
(po-> g4+) = 22%51613 kL(¢(p)- *  Can be substituted by other -
divergences / statistical families



Information Geometry (1/10

Brief Introduction

* Information geometry aims to elucidate the geometry of the space of probability
distributions.

* Generative models can be understood within the framework of information geometry,
where each probability distribution 1s treated as a point, and different families of
probability distributions form different manifolds.

Application
* Applied to diverse research fields including machine learning,

signal processing, neuroscience and physics, where probability

distribution matters.

Shun-ichi Amari
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Manifold and Coordinate Systems

e Manifold: An n-dimensional manifold M 1s a space
locally homeomorphic to R™. This means that for every point p in M there

is an open neighborhood U of p and a homeomorphism ¢: U — V' which maps the set U onto an
open set V c R™,

* The mapping ¢:U — V is called a chart or coordinate system.

* The image of the point p € U, denoted by ¢ (p) € R”", is called the coordinates

or local coordinates of p in the chart.
« Statistical manifold [?1 : Each point is a probability distribution.
A family of probability distributions M = { p(x, ¢)} specified by a vector
parameter ¢. ¢ 1s the coordinate.

* Example: 2D surface of 3D sphere
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Why manifold for probability distributions?

O—A
* Space of normal distributions, Coordinate p, 6 y B
, o |- @ ®
p(z) = ———exp (T C..eD
27.‘.0.2 20-2 0-2 ...... ‘ ................ ’
If a simple Euclidean distance is used, distance |[AB| = |CD| i A

But...
distance |AB| and |CD| should not be the same.

A different metric of distance is necessary.

 What 1s the metric and connection in the manifold of
probability distributions?

RY
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Divergence and Riemannian Metric

* Divergence

Def. A divergence is a kind of statistical distance: a binary function which establishes the
separation from one probability distribution to another ona statistical manifold.

(1) Non-negativity (2) Positivity (3) D(ps || po+as) Z 9:;(6)d6;d; + O(||d6|°)

zyl

* The dual divergence D* is defined as D*(p, q) = D(q, p). Symmetric positive-definite matrix

* Riemannian metric M
A divergence D provides M with a Riemannian structure.
Def. Tangent space T,,M at point p, a positive-definite inner product

9p: TyMXT,M — R. The smooth manifold endowed with this metric v

g 1s a Riemannian manifold, denoted (M, g).
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Affine Connection and Parallel transport

* An affine connection is a geometric object on a smooth manifold

which connects nearby tangent spaces.

Two nearby tangent spaces Tr and Tg, 4¢:

Tf 61(6)?62(€)a ...,6n(€)
Terae  €1(€ + d€), ex(€ + dE), ..., en(€ + dE)

ei(e + d) = (6) + Y Jrifs (©)ae
() _ 0’

Divergence D can define an affine connection T;; —
& () Pk 061063 00"

D(p,

p=q
* Parallel transport and Geodesic

If the manifold has an affine connection, it enables vector transport along
curves to maintain parallelism relative to the connection.

* Tangent vectors along the geodesic maintain the same direction.
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Bregman Divergence & Legendre Transformation z =1 (&) + V(&) - (€ — &)

* Bregman Divergence from convex function ()

Since Y 1s convex, it is always above the hyperplane, touching it

at &y. Hence, it is a supporting hyperplane of Y at &
Dy € : &) =v(&) — ¥ (&) — VY (&) - (€ — &) -

* Legendre Transformation => A dualistic structure ; .

The gradient of Y(&): & = Vip(§) is the normal vector n, we define a new function of &* by
P (€7) =€-& —9(8),

and ¢ is not free but is a function of &*, & = (&™), which is the inverse function of & = Vi (§)

By differentiating ¥ *(&*), we have a dualistic structure

£ =Vy(), £=Vy (£).

¢*) 1s a convex function, thus a new Bregman divergence is derived from the dual convex function
$")

- and Dy [¢:€"] =Dy ¢ : €.

D[¢:&,] -

Y™ is called the Legendre dual of

(
(

%
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Dually flat manifold and structure

 Flat manifold & Affine coordinate
(92 0 . a 02 /
~pgige aer DEIE) Tin€) = — 5 piger PENE)

* Dual affine connections T';;.(§) =

Dual metric condition: (A, B)¢, = (IIA,II"B)¢, II,1I*: parallel transport using I", I™*

Theorem. A dually flat manifold S has two special coordinate systems denoted by 8 = (64,::+,8,) and
n = (n4,"**, N,,) such that O is an affine coordinate system of V-connection and 7 is an affine coordinate
system of V*-connection. There exist two potential functions Y (0) and ¢ (1) which are strictly convex,
and are connected by the Legendre transformation such that  ¢(6) + ¢(n) — Z 0'n; = 0,

where 0 and n are the respective coordinates of the same point. S has a canonical divergence between two
points P and Q defined by

DIP: Q=4 (0p) + ¢ (ng) — Y 0bnq:

where @p and 1, are respective coordinates of points P and Q.



Information Geometry (8/10)

Example: Exponential Family

p(x,0)dx = exp[0 - -x —Y(0)]du(x) Dually flat manifold
Dual convex functions

¥(0) = log / exp(0 - x)du(x) Free Energy Convex function with respect to 8
p(n) = / p(z,n)log p(x,n)d= Entropy Convex function with respect to n
Dual affine coordinates

9 = 6:;(7:7) N = 81’;—6()?) = / z;p(x, 0)du(x) The expectation of x

Canonical divergence

D[B5p : 0g] = %(0p) + (ng) — Oomgi = / p(z,0p)log = E”’ gP; de  Kullback-Leibler divergence
DP\Z,0(
Fisher information matrix
0 .1 92 o — . .
D (p(=, z, &+ d¢)) = D Ner_pdtt + =—— D Ner_pedeided  Fisher information metric
(p(a, &)1 p(e, & +d€)) = 55 DIEIIE eed€’ + 5 o DIEIIE Ner—edgidg? e information
1 second derivative of KL

i ¢ 1 i ¢
=5 ¢|0; log p(z, &)0; log p(z, &)]|d¢' dE’ = Egijdg d¢’ divergence.
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Generalized Pythagorean Theorem

* Theorem (Generalized Pythagorean Theorem): When triangle PQR is orthogonal such that
the dual geodesic connecting P and Q is orthogonal to the geodesic connecting Q and R, the
following generalized Pythagorean relation holds:

D,(R:P)=Dy(Q:P)+Dy(R: Q). p dual geodesic

* Dual version: The geodesic connecting P and Q is orthogonal 07, = (1 — )0} + 10}

to the dual geodesic connecting Q and R, then
Dy(R:P)=Dy(Q:P)+ Dy(R: Q).

* Theorem: The canonical divergence function of a dually flat

manifold satisfies the Pythagorean relation, when V*-geodesic %

connection P and @ 1s orthogonal at Q to V-geodesic 0, geodesic

connecting Q and R. Oor(t) = (1 —1)0, + 16y
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em-Projection Theorem

* Theorem: Given P € M and a smooth submanifold S € M, the point that minimizes the
divergence Dy, [P : R], R € S, is the dual geodesic projection of P to S. The point that minimizes
the dual divergence Dy,+|[P : R], R € S, is the geodesic projection of P to S.

(Dually flat manifold: If exist, then unique)

* Divergence Between Submanifolds: Alternating Minimization Algorithm

Two submanifolds K and S in a dually flat M, we define a divergence between K and S by
D[K : S] = PGHQ?BESD[P : Ql=D|[P:Q].

m-flat

™ el P
. 3 \\
i
P~
)



VAE from IG 1nsights

* Model distribution manifold: P = {py(x,z) = pg(x|2z)p;(2): 0 € O}
* Data distribution manifold: Q = {q4(x,2z) = Pgara(X)qp(z]x): ¢ € O}

(pe-, g4+) = argmin Dxy,(g|p).

pEP,qeQ
Q
. o . , pa(z)gy(z | )
Exponential family with KL divergence is a dually flat
manifold, P and Q are flat submanifolds. The em-projection :
P

theorem guarantees its convergence.
{P(Z)Po(-"’ | 2)

Additionally, this framework readily accommodates

alternative divergences and extends to encompass broader statistical manifolds.



Preliminary Student’s t Distribution

* The VAE framework a priori does not require the prior, encoder or decoder to be a particular probability
distribution; the usual choice of Gaussian is mainly due to feasibility of the reparameterization trick
and closed-form computation of divergence.

* PDF: The family of d-variate Student’s t-distributions with variable mean u, scale matrix X and fixed
degrees of freedom v

> 1 Ts-1 e I( %i )
ta(zlp, B, v) = CoalZ[ 2 (1+ —(z — p) 27 (z — p) o Cva=
g I'(5)(vrm)>
0.40 T -
* Relation with Gaussian distribution v — oo, - N(u, ) 0.35} // \\ v=1
* Visualization: Right ﬁgure 0.30} 1N\ —v=2
* Intuition: 21 z? ) 095 i\ —v=5
Py 5 +0 = / N\ — =40
(:I:) \/% \/%( 2 + (iB )) g 650l [ V=400 7
_ (%) 22 v [1+v, v+l , 0.15}
f(iI:) N \/EF(%) (1 + 7) ~ 2y (1 B 2v T+ O(:II )) '\ 0.10}
* Theoretical proof >4 (Taylor expansion and Stirling 0.05} / N
approximation for gamma function) 0.00=="1 1 —




Preliminary Student’s t Distribution

* Moments: For v > 1, the moments of the t distribution are

0 kodd, 0<k<uv,
E{ Tk 1=
{T*} s

szl v—2j keven, 0<Ek<v.

Moments of order v or higher do not exit.
E(X)=v, forv>1; Var(X) = ﬁz, forv>2 oforl<v<?2
* How to generate an RV subjected to student’s t distribution?

A multivariate t-distribution T ~ t;(u, X, v) may be constructed from a multivariate centered
Gaussian Z ~ Ny(0,X) and an independent chi-squared variable V ~ y?(v) via

A
T+ .
S

* Heavy-tailed distribution: In probability theory, heavy-tailed distributions are probability
distributions whose tails are not exponentially bounded: that is, they have heavier tails than
the exponential distribution.




Introduction

* Motivation
* Real-world data frequently displays heavy-tailed and imbalanced patterns.

» The Gaussian prior is too tight to effectively fit complex latent representations; ‘over-
regularization’.

 Distributing more mass to the tails allows encoded points to spread out easily.

* Contribution

* t3VAE: a complete VAE framework that incorporates Student’s t-distributions for the prior,
encoder, and decoder.

« Experiments: t*VAE effectively models the low-density regions of heavy-tailed datasets
and generates high-dimensional images with richer detail.

* Extension: Introducing a hierarchical architecture enables the reconstruction of high-
resolution images with enhanced sophistication.



The t>-VAE

* y divergence: D, (qllp) :==v~'C,(q,p) — v 'H,(q)

1, (p) = — Pl = - ( / p<w>1+7dw) T @ [ <||§|(|)> dz

* Computing the dual connections yields that the totally I'*-geodesic submanifolds consist of
power families of the form

Sy = {ps(x) o (1 +~07 s(z))> : 6 € O}.

: : , o aa o) : : 2

* The family of d-variate Student’s t-distributions is I'*-geodesic when y = — -

Statistical Bregman Riemannian metric Dually flat structure Flat Submanifold

Manifold Divergence

Exponential | KL divergence Fisher information metric  The natural parameters and  Gaussian distribution

family expectation parameters p(x,z)

Power family |y divergence 52 L) = —% Dl 7o) Student t distribution
950) = —3p5g7| Do llpe) o 2

g lor=0 i) = " 00.00,00, 9/:91?(1)9 [l por) p(xr Z)a Yy = — :d




The t>-VAE

* Define joint distribution pg ,,(x, z) of a power form, parametrized by the degrees of freedom

v>2andy——ﬁ

vo—m-on

mole ) oo |1 (14l + o=@l )|

* Prior-decoder pair

pr(z) = / Po (@, 2)dz = t(2]0, T, v)
) _

_ poy(z, 2 1+vt2)° ,
poy(z|2) = N (.’B|,LL( ) o 1m oc’l,v+m

* When v — o, py,(x,2) = N (ug(2),5°D).



The t>-VAE

* Since the true posterior z|x 1s t-distributed with degrees of freedom v + n when the decoder
is shallow (Linear layer): ug(z) = Wz + b

- _vimin True posterior
) _ 1T T 2 -
’ SR IR B i~ G, S, + )

; b\ (WWT +02I W
Xlmin (g )> wT 1)'7) ~ T T 2 11
p(z) =W' (WW ' +0°I) " (z—b)

A \T T 27\—1(rn
(2 (i+vie-p W ) e ) +a21)1%
I1+v—'n SN
* We are motivated to incorporate a t-distributed encoder

\v

05,0 (2|2) = tm (2 |ps(z), 1 + v 'n)'Ty(z),v +n).

* When v - 00, g4, (z]) > N (1 (1), 2 ().



The t>-VAE

* From the geometric relationship of y-power divergence and power families, we are motivated
to replace the KL objective in the joint minimization problem with y-power divergence.

(Po+ v, q4+,,) = argmin D, (q || p)
pEP,,q€Q,
2
v+n+m’

where y 1s coupledtovasy = —

* y-loss

The y-power divergence from q,,,, € Q, to pg,, € P, can be computed in closed-form after an

approximation of order y 2.

1 1 2
£1(6,9) = 3Esern | 75Euma i I~ o)

vC
tr 2 (@) = 5 [Z4(a)

0
| 2(1+7)

) v
+ @I +

1

__r
v+m+n—2 n\% Ty v+m+n—-2 . Ty
— Cr = C

vtn—2 (1+7) C”W) and ¢ ( y—2 O Cvmin

for constants ¢, = (



The t>-VAE

Alternative prior and balance weight

* Analogously to the ELBO, the y-loss consists of an MSE reconstruction error and additional terms
which act as a regularizer.

* In fact, the remaining terms are equivalent (up to constants) to the y-power divergence from the
posterior q,,(z|x) to the alternative prior:

2

1 n vin—2
2 ) 2 _ — -1

y-loss can then be rewritten as

1

2
‘C'y(ea ¢) = Eerpiaa T‘QEZNQ¢,V('|$) Hw — Mo (z)” + aD’Y (q¢,V ”p:)] + const.

Hence, y-loss can be interpreted similarly as a balance between reconstruction and regularization,
and v controls both the target scale T2 and the regularizer coefficient @ = — %

2
* Asv — oo, 3VAE converges to the Gaussian VAE. As v — 2, in theory both 7, — 0 so that

regularization vanishes and t*VAE regresses to a raw autoencoder.



Equivalence to the Bayesian Hierarchical Model

* Prior-decoder pair

prule) = [ oule, )z = tn (210, 1,v)
s 2z~ /000 N, (z

Po(, 2) 1+v2)° ,
v = . =t , I, m
po.(x|2) p7(2) n (:1: | o (2) T o‘I, v+

_yim
2

1

1
2 1 2
0, V—l)\I) X (Alv)d\ (1 + > IEAl )

~ o 1 1
x|z N/o N, (a: po(2), V‘1A02I) N (z 0, 1/—1)\[> X2 (Alv)dA
L+v 2] ,
x t, (a: po(2), 52 m oc“l,v+m

* Itis then straightforward to add any number of latent layers z;|z<;, A~Np,. (z;|1g (2<;), vA~1o?)
to obtain a heavy-tailed hierarchical prior (z4,- - -, Z;).



Heavy-tailed distribution experiment

» The Fréchet inception Table 2: Reconstruction FID scores of CelebA and CIFAR100-LT. In CelebA, both overall scores and
distance (FID) score selected classes are shown. Bald, Mustache (Mst), and Gray hair (Gray) are rare classes (less than 5%
of the total), while No beard (No Bd) is common (over 50%). In CIFAR100-LT, FID is measured

Heusel et al.,2017 ) 1s iy ; T : ; :
( ’ ) varying imbalance factor p. Complete results of tuning each model are included in Appendix C.3.
employed to evaluate
image quality. (a) CelebA (b) CIFAR100-LT
Framework All  Bald Mst  Gray NoBd Framework p=1 10 50 100
. R t*VAE (v = 10) 394 | 665 615 672 401  t'VAE(v = 10) 97.5 102.8 108.3 128.7
* The images in Figure 3 VAE 579 | 858 79.7 910 584  VAE 256.1 267.2 2774 287.3
display rare feature VAE (k = 1.5) 732 1053 964 1145 738  VAE(x=15) 2742 2905 2967 297.7
s B-VAE(3=0.05 | 404 | 693 627 711 409  B-VAE(3 =0.1) 1141 1304 1385  160.6
combinations. Student-t VAE 78.4 | 112.0 104.2 1187  78.6  Student-t VAE 259.5 314.1 323.7 3334
_ DE-VAE (v = 5) 589 | 89.6 843 949  59.1  DE-VAE(vr=2.5) | 2194 250.2 256.7 258.5
* The top left image Tilted VAE (1 = 50) | 426 | 73.0 654 73.7 429  Tilted VAE (= =50) | 101.0 126.1 147.0 193.2
FactorVAE (yc = 5) | 59.8 | 91.7 857 952  60.8  FactorVAE (v =5) | 232.3 2725 2756  270.1
belongs to the

intersection of the Male
and Heavy Make-up
classes, which
constitute around 1% of
all images.

—r

VAE VAE (k = 1.5) Tilted VAE




Heavy-tailed distribution experiment

« Sample from the alternative t-prior pj(z); more vivid images.

Framework FID

t3VAE (v = 10) 50.6

t>VAE (v = 10) VAE VAE 64.7

" VAE (k = 1.5) 79.6
'&'@“"' ‘ : - B-VAE (8 = 0.05) 51.8
‘ . : Student-¢ VAE 82.3
VAE (k = 1.5) B-VAE DE-VAE (v = 2.5) 58.9

Tilted VAE (7 = 30) 59.2
FactorVAE (1. = 2.5) 67.0

€

Table 3: Generation FID scores for
CelebA.

i . <« Figure 4: Generated CelebA ex-
Tilted VAE FactorVAE ample 1mages.




Heavy-tailed distribution experiment

Higher clarity and sharper detail

9 2 L1 X*

N N AT

Original

Figure 5: Original and reconstructed images by t*HVAE (v = 10) and HVAE.
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* Other resources you can refer to:

Frank Nielsen | Information Geometry, divergences, and diversities | Geometric Science of Information

Manifolds: A Gentle Introduction



https://franknielsen.github.io/IG/index.html
https://bjlkeng.io/posts/manifolds/

