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Multi-view Learning
Multi-view data
• News in different languages;
• Describing events with images, audio and text;
• Detecting organs through different imaging mechanisms to obtain multi-modal medical 

images. 

Multi-view learning
• These semantically coherent multi-view samples are connected by a consensus 

representation.
• Individual views containing insufficient information, while different views can 

complement each other
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Incomplete Multi-view learning
Challenges and Solutions:
• Multi-view data with random missing views
• Missing filling / Grouping-and-learning / Cross-view learning
• Goal: making full use of existing data to predict the hidden features of missing views 

and integrate them into a unified representation.
Desiderata:
• Completeness: The learned multi-view representation contains complete information.
• Cross-generative: Multi-view representation learned from available views has the 

ability to generate missing sample.
• Solidative: There exists conservative information inherent to multi-view sampling that 

is not altered by the absence of views, e.g., the weight of views, the intrinsic 
correlations between views.
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Overview
• A deep generative model to learn view-peculiar and complete latent representation.
• Model the generation of the multiple views from a complete latent variable represented 

by a mixture of Gaussian distributions.
• Integrate view-invariant information into posterior inference to enhance the solidative

of the learned latent representation.
• The intrinsic correlations between views are mined to seek cross-view generality.
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Recap
• Variational Inference: This approach uses an approximate posterior distribution in a family to 

estimate the true posterior distribution by maximizing a variational lower bound.
• Objective: Use approximate posterior 𝑞 θ to estimate the true posterior distribution P θ|𝑋

evidence
与θ⽆关

ELBO (Evidence lower bound) KL divergence

Our goal: Minimize the KL divergence between the approximate posterior and the true posterior
Maximize the ELBO
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Recap

ELBO

𝜙

𝜃
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Vanilla Multi-view VAE

It is crucial to choose a highly expressive and easily 
computable density as the joint variational posterior.

Under the assumption that the density 𝑝({𝑥(")}) 
is achieved through the marginalization of a 
shared latent: 
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Vanilla Multi-view VAE
Introducing a mixture of Gaussian distributions as the joint variational posterior

Hint: 𝑓!(𝑥), ∫𝑓! 𝑥 	𝑑𝑥 = 1,  𝑔 𝑥 = ∑𝜆! 𝑓!(𝑥)
Continuous Jensen Inequality: ∫𝑓! 𝑥 log

" #
$! #

𝑑𝑥	 ≤ log ∫ 𝑓! 𝑥
" #
$! #

	𝑑𝑥 = 0

• The summation of KL-divergences drives the 
unimodal variational posteriors to approach 
the prior individually

• the summation of their expectations reveals 
alternatively variational inference followed 
by full view generation. ga

ox
in4

92



Complete Multi-view VAE
• Exploit the intrinsic correlations between views => Missing views

• Let ({𝑧(5)}, 𝑐) denote the view-peculiar and complete generative latent variables

• Modelling {𝑧(5)} by a linear transformation 𝑧(6) = 𝑧(5)𝐶56
For a random variable obeying the Gaussian distribution, given 𝑦 ∼ 𝑁(𝜇, Σ), whose linear 
transformation distribution is 𝑦𝐶 ∼ 𝑁(𝜇𝐶, 𝐶$Σ𝐶) under the statistical principle.
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Complete Multi-view VAE
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Complete Multi-view VAE

① Prior on the complete latent variable
② Prior on the correlation between different 

view-peculiar latent variables
Note that the second term of Eq. (12) 
calculates only the available paired views.

③ Reconstruction loss

(12)
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Complete Multi-view VAE

• The intrinsic correlations between views are explicitly 
modeled, ensuring that they are not affected by the 
absence of certain views. 

• As a result, the weight of the Gaussian Mixture Model 
(GMM) remains preserved.
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Experiments
• Clustering, Classification, Cross-view generation, Bioinformatic Data
• Model setup:

• Multi-view in different datasets:

• Incomplete data construction:

The fusion network                          concatenates multiple view-peculiar latent representations, 
followed by a fully connected layer with dimensionality D.

All samples were guaranteed to retain at least one view
Missing rate η = {0, 0.1, 0.2, 0.3, 0.4, 0.5}, randomly selected η×n×m samples as missing data, 
then random instances were removed from each view

Different image features (HOG, LBP, Gabor features…)
Different deep representation
Different writing styles…
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Joint Likelihood Approximation
The value of the variational lower bounds affects the portrayal of the 
data distribution, as well as the accuracy of the inference of the posterior.
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Results: Clustering
• Impute Missing Data with Mean (methods which cannot handle missing views directly)
• Evaluate Two-View Combinations (methods which can only handle two view data)
• Conducting k-means directly on the latent representation z and c, respectively
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Results: Classification
• The multi-view unified latent representations z and c are respectively fed into fully 

connected layers with the softmax activator. 
• Network parameters are jointly optimized by adding cross-entropy loss.

Mining the correlation between views and making full use of view invariant information is helpful for 
learning complete latent representations in the absence of views.

Six datasets
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Results: Cross-view Generation
• Five digits [0, 4, 6, 7, 9]:① digit 0 containing only view 1. ② digit 4 containing only view 

2. ③ digit 6 containing only view 3. ④ digit 9 containing only view 4 and ⑤ digit 7 
containing views 2, 3, 4, 5.
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Application to Bioinformatic Data
• Bioinformatic multi-omics data: PBMC, BMMC datasets
• Multiomics single-cell genomic data

(1) Multiome PBMC. Human peripheral blood 
mononuclear cell (PBMC) profiles generated by the 
10× Genomics Multiome ATAC and RNA kit with 
11,909 cells. 

(2) Multiome BMMC. Single-cell multi-omics data 
collected from bone marrow mononuclear cells 
(BMMC) from 12 healthy human donors. Half of the 
samples were measured using paired RNA and 
ATAC kits, and half were measured using single-cell 
gene expression kits only, for a total of 69,249 cells.
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Application to Bioinformatic Data

[1] S. Ghazanfar, C. Guibentif and J.C. Marioni. Stabilized mosaic single-cell data integration using unshared features. Nature 
Biotechnology, 1-9, 2023.

CMVAE clearly divides the NK cell population into two clusters, which implies that NK can be classified 
into two subtypes, as in [1] 
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Conclusion

Advantages:
1. Introduction of view-invariant information mining enables compensation for missing 

view information.
2. The variational inference process incorporates the exploration of intrinsic 

transformations between views for interconversion, ensuring that view weights 
remain invariant to prevent misrepresentation of the latent variable.

3. Practical significance demonstrated through application to real bioinformatics data.

Disadvantage:
1. Limited proof demonstration; modifications have been made in the PowerPoint 

presentation. ga
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