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* Vanilla Multi-view VAE (VMVAE)
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Multi-view Learning

Multi-view data
* News 1n different languages;
* Describing events with images, audio and text;

* Detecting organs through different imaging mechanisms to obtain multi-modal medical
1mages.

Multi-view learning

* These semantically coherent multi-view samples are connected by a consensus
representation.

* Individual views containing insufficient information, while different views can
complement each other



Incomplete Multi-view learning

Challenges and Solutions:
* Multi-view data with random missing views
* Missing filling / Grouping-and-learning / Cross-view learning

* Goal: making full use of existing data to predict the hidden features of missing views
and integrate them into a unified representation.

Desiderata:
* Completeness: The learned multi-view representation contains complete information.

* Cross-generative: Multi-view representation learned from available views has the

ability to generate missing sample. There is something not changed.

* Solidative: There exists conservative information inherent to multi-view sampling that
1s not altered by the absence of views, e.g., the weight of views, the intrinsic
correlations between views.



Overview

* A deep generative model to learn view-peculiar and complete latent representation.

* Model the generation of the multiple views from a complete latent variable represented
by a mixture of Gaussian distributions.

* Integrate view-invariant information into posterior inference to enhance the solidative
of the learned latent representation.

* The intrinsic correlations between views are mined to seek cross-view generality.
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(a) Vanilla Multi-view VAE (b) Complete Multi-view VAE




Recap

 Variational Inference: This approach uses an approximate posterior distribution in a family to
estimate the true posterior distribution by maximizing a variational lower bound.

* Objective: Use approximate posterior q(0) to estimate the true posterior distribution P(6|X)

log P(X)|= /q(@) log P(X)d6

evidence B P(X | 0)P(08) q(6)
sozx = [ a0)108 PO X)_ q(0)

_ / q(0) log P(X | 8)d0 — KL(q(6), P(9)) K L(q(6), P(8 | X))

do

ELBO (Evidence lower bound) KL divergence

Our goal: Minimize the KL divergence between the approximate posterior and the true posterior
M)  Maximize the ELBO



Recap



Vanilla Multi-view VAE

omit the subscript 7 and denote {**)}7" | as {x(")}

a m views dataset X = {X{) ¢ Rnxdv}m {ng),xév),...,ng)}.

v=1r
\

Under the assumption that the density p({x™})
1s achieved through the marginalization of a
shared latent:

m (D) L Gg @) Poeo (D [2),/ 5 (1))
p({x"}) :/Hpg(v)(x(”)|z)p(z)dz. (2) X S /
v=1 "N
@f@bﬁzﬁlf‘f})} g oo 'ZL@
log p({x'")}) > Lerso({x"'}) Wi :

=~ Dia (a(2l{x"}) p(2)) P
+ ]Eq(z|{x(v)}) |:10g p({X(v)}|Z):| . (3) @?{;(m)(zlx(m)) pg(m)(x(m) |Z)
It is crucial to choose a highly expressive and easily (a) Vanilla Multi-view VAE

computable density as the joint variational posterior.



Vanilla Multi-view VAE

Introducing a mixture of Gaussian distributions as the joint variational posterior

a(2l{x™}) = D Mgy (2x™) Lerpo == Dy (Z Aogoeo (2% p<z>)
v=1
= Z)\UN(Z; M (o) (x)), 24 (x))) + Z/\ E, S () lz log pyv) (x19)|2) 1
v=1

\

* The summation of KL-divergences drives the -
unimodal variational posteriors to approach Ernvin Z Ay Dkt (q oo (2]x ) ||p(z)>
the prior individually

 the summation of their expectations reveals )
alternatively variational inference followed + z_: AvEaq ) Galx) Zzllogp o (x]2)
by full view generation. < [;LBO. ’

Hint: f;(x), [ fi(x) dx =1, g(x) =X 2; fi(x)

Continuous Jensen Inequality: [ f;(x)log fg ((Z)) dx <log [ f;(x) ]‘?((3;)) dx =0




Complete Multi-view VAE

* Exploit the intrinsic correlations between views => Missing views
* Let ({z(")}, ¢) denote the view-peculiar and complete generative latent variables

* Modelling {z(*)} by a linear transformation zW) = z(")C,,,

For a random variable obeying the Gaussian distribution, given y ~ N (u, X), whose linear
transformation distribution is yC ~ N(uC, CT%C) under the statistical principle.

q({z}, cl{x'"'})
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Complete Multi-view VAE
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Complete Multi-view VAE
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Note that the second term of Eq. (12)

calculates only the available paired views.

(3) Reconstruction loss (b) Complete Multi-view VAE



Complete Multi-view VAE

e —~
Algorithm 1 Optimization Procedure of CMVAE ://X(l)\)_"zb“) (@ 1x®) > z(D) Po (xD |c) X(l)\)

Input: Multi-view dataset X’; Statistical model of the prior L / g
p(c) = N(0,I); Setting T = 1 and the dimensionality of 440 ZP1x?) @ i
latent variables. A
Parameter: Initialize parameters {¢)}, {#(")}, + with

- 1 . . . 2 ,/
random values, A\, = -- and C,, with identity ma- : e »(cl{z?)

trix. o (2 |x (M)
1: while not reaching the maximal epochs do @94’(' e ALOR

2. forvin m views do

3: Calculate | (£t (x()), DIPNE (x(*)))| through v-th (b) Complete Multi-view VAE
encoder and then sample z;"’ by Eq. (10);
Implement z(W) = 20, Yw € 1,2,....m, w #

Pg(m) (X(m) |C)

o (v) _ (v)
Calculate (uw({z("’)}), >, ({z(")})) through the fu- %t = Hew T R‘b(v)et (10)
sion network and then sample c; by Eq. (11); Ct = Uy -+ Ri/J € (11)
4: for 7 in m views do
5} Generate {x(")} by m decoders. o . . o
6: end for * The intrinsic correlations between views are explicitly
7 end for :
5 Update {6}, {80}, &, Cou, Ay by maximizing modeled, ensuring that they are not affected by the
Eq. (12). absence of certain views.
9: end while * As aresult, the weight of the Gaussian Mixture Model

Output: The complete generative latent representation c.

(GMM) remains preserved.




Experiments

* Clustering, Classification, Cross-view generation, Bioinformatic Data

» Model setup: g (2 | x), py (x| <)

The fusion network () (C | {Z(”) }) concatenates multiple view-peculiar latent representations,

followed by a fully connected layer with dimensionality D.

e Multi-view in different datasets:

Different image features (HOG, LBP, Gabor features...)
Different deep representation
Different writing styles...

* Incomplete data construction:

All samples were guaranteed to retain at least one view

Datasets

# Samples

# Views

# Classes

Dimensionality

MSRC-V1
Notting-Hill
Handwritten

Caltech101-20
BDGP
Animal
PolyMNIST
Multiome PBMC
Multiome BMNC

240
550
2000
2386
2500
10158
60000
11909
69249

N N O N N O G W O

7
5
10
20
5
50
10
11
22

24,576,512,256,254
2000,3304,6750
240,76,216,47 64
48,40,254,1984,512,928
1750,79
4096,4096
784,784,784,784,784
36601,108377
13431,116490

Missing rate 1= {0, 0.1, 0.2, 0.3, 0.4, 0.5}, randomly selected nxnxm samples as missing data,

then random instances were removed from each view



Joint Likelithood Approximation

logp ({X(v) }) > LvMvAE  The value of the variational lower bounds affects the portrayal of the

(v) data distribution, as well as the accuracy of the inference of the posterior.
logp({x > LOMVAE
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Fig. 2. The variation of the objective values in terms of training iteration for (a) VMVAE, and (b) CMVAE, on the Handwritten dataset. The
convergence values reached by ELBO decrease as the missing rate increases, while CMVAE ultimately achieves a higher ELBO value. (c) The
pronounced difference in ELBO values on the Caltech101-20 dataset verifies that CMVAE has a tighter lower bound, especially with large amounts
of information missing.



Results: Clustering

* Impute Missing Data with Mean (methods which cannot handle missing views directly)
* Evaluate Two-View Combinations (methods which can only handle two view data)

* Conducting k-means directly on the latent representation z and c, respectively

— BSV ——— Concat —— DCCA DCCAE —— VCCAP —— UEAF — CPM COMPLETER —— VMVAE — CMVAEI —— BSV —— Concat —— DCCA DCCAE = VCCAP —— UEAF — CPM COMPLETER —— VMVAE — CMVAEJ
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(a) MSRC-V1 (b) Notting-Hill (c) Handwritten (a) Caltech101-20 (b) BDGP (c) Animal
Fig. 3. Clustering performance comparison in terms of NMI and Accuracy by tested ten methods under different missing rates, on (a) MSRC-V1, Fig. 4. Clustering performance comparison in terms of NMI and Accuracy by tested ten methods under different missing rates, on (a) Caltech101-20,

(b) Notting-Hill, and (c) Handwritten. (b) BDGP, and (c) Animal.



Results: Classification

* The multi-view unified latent representations z and ¢ are respectively fed into fully
connected layers with the softmax activator.

* Network parameters are jointly optimized by adding cross-entropy loss.

TABLE 3

Classification accuracy comparison under different missing rate on three datasets (mean-+tstandard deviation). Higher values indicate better
performance. The optimal and suboptimal results are in bold and underlined, respectively.

Datasets Methods 0 0.1 0.2 0.3 0.4 0.5
BSV 52.4542.21 50.954+1.62  53.30+1.27  45.70+1.15  39.2842.41 30.0142.55
Concat 67.914+2.08 65.544+1.06  55.434+1.04  50.31+1.41  45.34+0.60  32.79+0.32
DCCA [2] 56.784+1.92 52.004+0.54  52.164+1.55 46.97+1.64  41.67+1.86  36.78+1.43
Caltech101-20 DCCAE [22] 56.60+1.35 57.204+1.46  56.824+0.62  55.47+0.89  49.36+1.14  50.12+1.18
VCCAP [3] 58.17+3.18 50.564+0.54  47.804+0.58  44.20+0.57 46.77+1.21  44.49+1.07
UEAF [52] 76.15+ 095  74.67+1.07 72.63+1.05 71.86+1.19 6896+1.62  66.834+2.20
CPM [17] 90.8440.52 91.104+1.28  90.854+0.98  89.40+1.24  87.23+1.18  84.39+2.38
COMPLETER [33] 91.48+0.84 89.65+0.55  88.68+0.84  86.15+1.74  85.14+1.47  84.80+1.65
VMVAE 92.58+0.78 90.104+1.60  89.65+0.65  87.88+1.85  86.68+2.07  84.51+3.32
CMVAE 92.48+0.65 92.21+0.45  91.45+0.64  90.45+0.55  89.55+0.90 87.65+1.58

Mining the correlation between views and making full use of view invariant information is helpful for

learning complete latent representations in the absence of views.

Six datasets



Results: Cross-view (Generation

* Five digits [0, 4, 6, 7, 9]: (1) digit 0 containing only view 1. (2) digit 4 containing only view
2. (3) digit 6 containing only view 3. (4) digit 9 containing only view 4 and (5) digit 7
containing views 2, 3, 4, 5.
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(a) Samples with missing view (b) MoPoE-VAE (c) VMVAE (d) CMVAE

Fig. 5. Visualization on cross-view image generation. (a) For each sample of 0, 4, 6, and 9, there are only one view are observed, while the others
are missing. For the sample 7, there are only one missing view. The observed samples are used for generating the remaining view images by (b)

MoPoE-VAE, (c) VMVAE, and (d) CMVAE. As can be seen, CMVAE shows the best detail in terms of figures structure and background, which is
clearly contrasted in the first view, highlighted by the green box.



Application to Bioinformatic Data

e Bioinformatic multi-omics data: PBMC, BMMC datasets
* Multiomics single-cell genomic data

TABLE 5

Performance comparison of cell typing. Larger values indicate better
(1) Multiome PBMC. Human peripheral blood performance. The optimal and suboptimal results are in bold and
underlined, respectively.
mononuclear cell (PBMC) profiles generated by the
10x Genomics Multiome ATAC and RNA kit with Datasets Methods NMI ARI ASW
1 1’909 CCHS. MOFA+ [54] 79.12 71.58 62.14
2) Multiome BMMC. Single-cell multi-omics data Multiome PBMC  Seurat-v4 [55]  81.68 7434  60.59
g

collected from bone marrow mononuclear cells MOVE[S6], 7768 6587 5948
CMVAE 81.85 75.53 62.80

(BMMC) from 12 healthy human donors. Half of the
samples were measured using paired RNA and MOFA+[34 6063 2586 3340
. . . Multiome BMMC Seruat-v4 [55] 73.67 61.19 58.98
ATAC kits, and half were measured using single-cell MuldVI[ss] 7510 6027 5928
gene expression kits only, for a total of 69,249 cells. CMVAE 7856 6817  59.89




Application to Bioinformatic Data

CMVAE clearly divides the NK cell population into two clusters, which implies that NK can be classified
into two subtypes, as in [1]

@ B o CD4dmemoryT e CD4naive e CD8memoryT e CD8naive e Classical monocytes and mDC

¢ Intermediate monocytes NK ® Non-classical monocytes Unconventional T cells pDC

UMAP2
UMAP2
UMAP2
UMAP2

UMAP1 UMAP1 UMAP1

(a) MOFA+ (ARI: 71.58%)  (b) Seurat-v4 (ARI: 74.34%) () MultiVI (ARI: 65.37%)  (d) CMVAE (ARI: 75.53%)

Fig. 7. Visualization results of multi-view latent representations using UMAP on Multiome PBMC dataset. Different colors represent different cell
types. Through CMVAE, NK cells are more distinctly divided into two clusters in the embedding space, and the best cell typing performance for the
ARl indicator is obtained.

[1] S. Ghazanfar, C. Guibentif and J.C. Marioni. Stabilized mosaic single-cell data integration using unshared features. Nature
Biotechnology, 1-9, 2023.



Conclusion

Advantages:

1. Introduction of view-invariant information mining enables compensation for missing
view information.

2. The variational inference process incorporates the exploration of intrinsic
transformations between views for interconversion, ensuring that view weights
remain invariant to prevent misrepresentation of the latent variable.

3. Practical significance demonstrated through application to real bioinformatics data.

Disadvantage:
1. Limited proof demonstration; modifications have been made in the PowerPoint
presentation.



