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Introduction
• This work proposes a new framework for modeling predictive uncertainty called 

Prior Networks (PNs) which explicitly models distributional uncertainty.

• PNs do this by parameterizing a prior distribution over predictive distributions.

model uncertainty, data uncertainty and distributional uncertainty

• Model uncertainty, Epistemic uncertainty (reducible)

• Data uncertainty, Aleatoric uncertainty (irreducible)

• Distributional uncertainty arises due to mismatch between the training and test 
distributions (also called dataset shift)
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Bayesian uncertainty
Distribution 𝑝(𝒙, 𝑦) over input features 𝒙 and labels 𝑦
A classification model 𝑃(𝜔!|𝒙∗, 𝒟) trained on a finite dataset 𝒟 = {𝒙𝒋, 𝑦$}$%&' ~𝑝(𝒙, 𝑦)

Approximation 𝑞(θ)
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Distribution of distribution
A categorical distribution 𝜇 over class labels 𝑦

Explicitly parameterize a distribution over distributions on a simplex

• Confident in-distribution data: a sharp distribution centered on one of the corners of the simplex
• Noise or class overlap (data uncertainty): a sharp distribution focused on the center of the simplex 
• Confident out-of-distribution: a flat distribution, large uncertainty
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Prior Network
In Prior Networks data uncertainty is described by the point-estimate categorical 
distribution 𝜇 and distributional uncertainty is described by the distribution over 
predictive categoricals 𝑝(𝜇|𝒙∗, θ)

Distributions over a simplex: a Dirichlet, Mixture of Dirichlet distributions or the 
Logistic-Normal distribution 

Higher values of  𝛼( lead to sharper distributions
Uncertainty 𝑲

𝜶𝟎
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Dirichlet Prior Network
A Prior Network which parametrizes a Dirichlet will be referred to as a Dirichlet Prior 
Network (DPN). A DPN will generate the concentration parameters 𝛼 of the Dirichlet 
distribution.

The posterior over class labels will be given by the mean of the Dirichlet:

If an exponential output function is used for the DPN, where 𝛼! = 𝑒"! , then the expected 
posterior probability of a label 𝜔! is given by the output of the softmax ga
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Training loss
Minimize the KL divergence between 
• the model and a sharp Dirichlet distribution focused on the appropriate class for in-

distribution data
• the model and a flat Dirichlet distribution for out-of-distribution data

It is simple to specify a flat Dirichlet distribution by setting all  %𝛼! = 1

The in-distribution target '𝛼!, '𝜇! =
#$!
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Measures
Expected predictive categorical

Max probability: measure of confidence in the prediction

Entropy: entropy of the predictive distribution, behaves similar to max probability, 
represents the uncertainty encapsulated in the entire distribution
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Measures: MI

MI between 𝑦 and 𝜇, the spread is now explicitly due to distributional uncertainty

Here, MI implicitly captures elements of distributional uncertainty.
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Entropy, MI

H(X, Y)

I(X,Y)H(X|Y) H(Y|X)

H(Y)H(X)

Model
uncertainty

Total uncertainty Expected Data Uncertainty

𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻(𝑋|𝑌)
𝐼 𝑋, 𝑌 = 𝐻 𝑌 − 𝐻(𝑌|𝑋)
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Measures: the differential entropy
The differential entropy: maximized when the Dirichlet Distribution is flat

(a) Sharp distribution, 
concentrated categorical prediction

(b) Sharp distribution, 
equiprobable categorical prediction

(c) Flat distribution, 
equiprobable categorical prediction

Distribution Uncertainty
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Experiments and results
• class overlap 
Entropy is high both in region of class 
overlap and far from training data

- difficult to distinguish out-of-
distribution samples and in-distribution 
samples at a decision boundary

Differential entropy is low over the 
whole region of training data and high 
outside

- allowing the in-distribution region to 
be clearly distinguished from the out-
of-distribution regionga
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Experiments and results
MNIST and CIFAR-10 are low data uncertainty datasets - all classes are distinct

Differential entropy of the Dirichlet prior will be able to distinguish in-domain and out-of-
distribution data better than entropy when the classes are less distinct.  

zero mean isotropic 
Gaussian noise 
with a standard 
deviation σ=3 noise

total           model      distribution 

OOD: positive class    ID: negative class
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Introduction
• It is not sensitive to arbitrary scaling of 𝛼) classical EDL hinders the learning of

evidence, especially for samples with high data uncertainty annotated with the 
one-hot label.

• We propose a simple and novel method, Fisher Information-based Evidential Deep 
Learning (I-EDL), to weigh the importance of different classes for each training 
sample.

• We introduce PAC-Bayesian bound to further improve the generalization ability.

• Our proposed method consistently outperforms traditional EDL-related algorithms 
in multiple uncertainty estimation tasks, in the confidence evaluation, OOD
detection, and few-shot classification.
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DUM and EDL
• Dirichlet-based uncertainty models quantify different types of uncertainty by modeling the output 

as the concentration parameters of a Dirichlet distribution.

• Evidential deep learning (EDL) adopts Dirichlet distribution and treats the output as evidence to 
quantify belief mass and uncertainty by jointly considering the Dempster–Shafer Theory of 
Evidence (DST) and subjective logic (SL).

State space: K mutually exclusive singletons (e.g., class labels) 

=> belief mass, uncertainty mass

=> Dirichlet prior, evidence

=> assign belief and uncertainty

=> point-estimated categorical prediction
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Graphic Representation
• EDL supposes the observed labels y were drawn i.i.d. from an isotropic Gaussian 

distribution, i.e.

where 𝑝 ∼ 𝐷𝑖𝑟(𝑓/(𝑥) + 1).

Training evidential neural networks by minimizing the expected MSE can be viewed as 
learning model parameters that maximize the expected likelihood of the observed labels.
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Graphic Representation

𝑥 𝑦

𝑝

𝑥 𝑦

𝑝

𝛼

𝑥 𝑦

𝑝

𝛼

𝑥:  Observed images
𝑦:  Observed labels
𝑝:  Probability map
𝛼:  Parameter of Dirichlet distribution
Solid arrows indicate generation while dashed ones refer to inference procedure from a neural network.

Classical DNN                                    EDL                                             𝐼-EDL
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Higher evidence & Higher variance
• EDL supposes the observed labels y were drawn i.i.d. from an isotropic Gaussian 

distribution, i.e.

where 𝑝 ∼ 𝐷𝑖𝑟(𝑓/(𝑥) + 1).

• The information of each class carried in categorical probabilities 𝑝 is different, 
thus the generation of each class for a specific sample should not be isotropic.ga
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Fisher information matrix
• The Fisher information is a way of measuring the amount of information that an observable

random variable 𝑋 carries about an unknown parameter θ of a distribution that models 𝑋.

• To assess the goodness of our estimate of θ we define a score function

• The expected value of score wrt. our model is zero

• The covariance of score function above is the definition of Fisher Information Matrix

• The negative expected Hessian of log likelihood is equal to the Fisher Information Matrix F

𝑥#, 𝑥$, … , 𝑥%                           𝑝(𝑥; 	θ)
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Insights about FIM

𝛼0 < 𝛼1, trigamma function is a monotonically decreasing function when 𝑥 > 0	

In our context, the Fisher information matrix (FIM) is chosen to measure the amount of 
information that the categorical probabilities 𝑝 carry about the concentration parameters 𝛼
of a Dirichlet distribution that models 𝑝.
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MLE
• In MLE, we can learn model parameters θ by minimizing the expected negative

log-likelihood loss function:

• General loss can improve generalization but is intractable (𝑥, 𝑦) ~ 𝑃

• We can find an upper bound of this optimization problem, converting general loss
into empirical loss.
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PAC-Bayesian Bound
• This theory focuses on the upper bound of the probability of generalization error 

for a model output by a learning algorithm, given a certain data distribution.

𝑝	~	𝐷𝑖𝑟(𝑝|𝛼)

𝛼 = 𝑓# 𝑥 + 1

𝑅𝑉: 	𝜃 ⇒ 𝑝

1. Prior Distribution, 𝜋: The distribution over the hypothesis set before observing any data. It 
reflects our initial beliefs about the parameters.

2. Posterior, 𝜌: After observing data, our beliefs about the hypothesis set are updated, leading to 
the posterior distribution.
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Upper Bound
• In this paper, we treat 𝐷𝑖𝑟(𝑝|𝛼) as the posterior distribution, and the prior as 𝐷𝑖𝑟(𝑝|𝜇),

where μ is set to 𝛽 ≫ 1 for the corresponding class and 1 for all other class.

• The upper bound of the optimization problem in MLE can be expressed as

• The first term is the expected FIM-weighted MSE subtract the negative log determinant
of the FIM:

• The second term can be simplified by setting as Sensoy et al.
ga
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MLE & MSE & Cross-entropy

• Gaussian

• Bernoulli
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Objective function
• Finally, the objective function Eq.(2) can be reformulated as

classical EDL can be viewed as 
a degenerate version of I-EDL

• For different labels in a sample
Though it has been correctly classified for a specific label, it 
still allows for more evidence for the overlapping labels.
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Objective function
Uncertainty 𝑲

𝜶𝟎
  

https://github.com/danruod/IEDL
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Experiments
• OOD detection

We mainly focus on the comparisons with DBU models, which solve OOD detection by distinguishing 
different types of uncertainty.
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Experiments
• Few-shot Learning

Our method not only improves classification accuracy but also greatly improves the availability of uncertainty 
estimation in the more challenging few-shot scenarios.
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Experiments
• Density plots of the predicted 

differential entropy and mutual 
information (Last paper, distributional
uncertainty)

• Lower entropy or mutual information 
represents the model yields a sharper 
distribution, indicating that the sample 
has low uncertainty.

• Our method provides more separable 
uncertainty estimates, I-EDL produces 
sharper prediction peaks than EDL
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Conclusion
• The observed label is jointly generated by the predicted categorical probability and 

the informativeness of each class contained in the sample.

• The informativeness is modeled by the uncertainty of the estimator of α (FIM), 
naturally including data uncertainty.

𝑥 𝑦

𝑝

𝑥 𝑦

𝑝

𝛼

𝑥 𝑦

𝑝

𝛼

Classical DNN                      EDL                                 𝐼-EDL
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