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1 Introduction to the framework (15mins)

• 1.1 Group Registration & Deep combined computing (10mins)

• 1.2 𝓧-metric and 𝓧-CoReg (5mins)

2 Preliminaries (30mins)

• 2.1 Entropy and Mutual information (MI) (10mins)

• 2.2 EM algorithm and combined computing (20mins)

3 Generic Framework for Registration (35mins)

• 3.1 Notation and Graphic representation (10mins) 

Break (5 mins) 

• 3.2 MLE insights and EM (20mins)

• 3.3 𝓧-metric and 𝓧-CoReg (5mins)

4 Extended Framework for DeepCC (35mins)

• 4.1 Graphic representation and Framework Modification (5mins)

• 4.2 MLE => Loss function (15mins)

• 4.3 Network Architecture and training Pipeline (15mins)

5 Experiment (15 mins)
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1.1 Group Registration

Pairwise 

Groupwise

Hill, Derek LG, et al. "Medical image registration." Physics in medicine & biology 46.3 (2001): R1.

The common space ?

◼ Unbiased groupwise Registration

◼ Group-to-reference Registration

Objective: Recover the spatial correspondences of two or multiple images by 

maximizing a given similarity metric.
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1.1 Group Registration

Main concepts and notations: 

• Image space  Ωj ,    Spatial samples   𝒙, 𝝎, 𝝃 ∈ Ω𝑗

• The observed image group 𝑼 = {𝑈𝑗}𝑗=1
𝑁 , 𝑈𝑗∶ Ωj  →  ℝ

• The j-th image  𝑈𝑗 = (𝑢𝑗𝝎)𝝎∈Ω𝑗
, 𝑢𝑗𝝎 abbreviation for 𝑈𝑗(𝝎), where 𝝎 ∈ 𝛀𝒋

• Common space / Common coordinate system   Ω

• Spatial transformation  𝝓 = {𝜙𝑗}𝑗=1
𝑁 ,  𝜙𝑗 ∶ Ω →  Ωj 

• The resampled intensity vector 𝒖𝒙
𝝓

= [𝑢𝒙,1
𝜙1 , … , 𝑢𝒙,𝑁

𝜙𝑁 ]𝑇, where 𝑢𝑥,𝑗

𝜙𝑗 ≜ 𝑈𝑗 ∘ 𝜙𝑗(𝒙), 

𝒙 ∈ 𝜴

The purpose of co-registration / group registration:

Given 𝑁 observed image group 𝑼 = {𝑈𝑗}𝑗=1
𝑁

Find the spatial transformation 𝝓 = {𝜙𝑗}𝑗=1
𝑁  that aligns them into a common 

coordinate system Ω. 
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1.1 Group Registration

Joint Intensity Distribution

which is factorized over 𝑖. 𝑖. 𝑑 spatial samples 𝒙 ∈ 𝜴, α(𝒙) is the parameter of the 

distribution for every intensity vector, which can be spatially variant. 

Maximum likelihood approach

Find the optimal spatial correspondences through the MLE of a multivariate JID 

indexed by the spatial transformation 𝝓

Parameters concerned 𝜽:

✓ spatial transformation: 𝝓

✓ distribution parameter: α(𝒙)
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1.1 Combined computing

Combining registration with segmentation in a unified framework

Generative model  - GMM

Common space / Common coordinate system / Common anatomy

Medical images are usually complementary yet inherently correlated through 

their underlying common anatomy.

Categorical latent variables
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1.1 Combined computing

Combined computing in MvMM

Registration

Registration

• Similarity metric

• Spatial transformation

Segmentation

• Common anatomy

• Spatial transformation

Note: Assume that the anatomical 

structures in the image can be entirely 

distinguished based on the pixel values.
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1.2 𝓧-metric

• What?

A groupwise similarity metric

• How?

• Why?

The statistical dependency of 

a set of random variables

+
The intensity-class mutual 

information

✓ It can measure the statistical dependency among an arbitrary number of 

images.

✓ The computation of the joint entropy 𝐻(𝑈) is computationally prohibitive 

in general for 𝑁 ≫ 2.
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1.2 𝓧-CoReg 

• What?  A generic co-registration algorithm

• Why?

• How?

Common space parameters: α = { 𝜋, 𝛤 }

Transformation parameters: 𝜙 = {𝜙𝑗}𝑗=1
𝑁

✓ No closed-form solution of the inner optimization, coordinate ascent

✓ Maximum log-likelihood and EM insights
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1.2 The proposed framework

A generic probabilistic framework for estimating the statistical 

dependency and finding the anatomical correspondences among an 

arbitrary number of medical images. 

𝓧-metric: Information-theoretic metric

𝓧-CoReg: Co-registration algorithm

𝑵: Groupwise registration of the 𝑁 observed images

Extended to Deep Combined Computing

It can be interpreted 

from both the 

information-

theoretic and the 

MLE perspective
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1 Introduction to the framework (15mins)

• 1.1 Group Registration & Deep combined computing (10mins)

• 1.2 𝓧-metric and 𝓧-CoReg (5mins)

2 Preliminaries (30mins)

• 2.1 Entropy and Mutual information (MI) (10mins)

• 2.2 EM algorithm and combined computing (20mins)

3 Generic Framework for Registration (35mins)

• 3.1 Notation and Graphic representation (10mins) 

Break (5 mins) 

• 3.2 MLE insights and EM (20mins)

• 3.3 𝓧-metric and 𝓧-CoReg (5mins)

4 Extended Framework for DeepCC (35mins)

• 4.1 Graphic representation and Framework Modification (5mins)

• 4.2 MLE => Loss function (15mins)

• 4.3 Network Architecture and training Pipeline (15mins)

5 Experiment (15 mins)
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2.1 Entropy 

Information

• Given a discrete random variable X with probability distribution p(x), 

its information is defined as

ℎ 𝑥 = − log 𝑝(𝑥)

Shannon’s entropy

• Definition: Given events 𝑒1, … , 𝑒𝑚 occurring with probabilities 

𝑝1, … , 𝑝𝑚, the Shannon’s entropy is defined as

𝐻 𝑋 = ෍

𝑖

𝑝𝑖 log
1

𝑝𝑖
= − ෍

𝑖

𝑝𝑖 log 𝑝𝑖

• Interpretations:

• The amount of average information

• The uncertainty of the random variable

• The dispersion of the probability distribution
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2.1 Entropy 

Joint Entropy

• Definition: Given random variables 𝑋1, … , 𝑋𝑛 and their joint distribution 

p(𝑥1, … , 𝑥𝑛), the joint entropy of 𝑋1, … , 𝑋𝑛 is defined as 

𝐻 𝑋1, … , 𝑋𝑛 = − ෍

𝑥1

… ෍

𝑥𝑛

𝑝 𝑥1, … , 𝑥𝑛 log 𝑝 𝑥1, … , 𝑥𝑛

• Interpretations:

• The dispersion of the clustering. 

• A groupwise similarity metric. By finding the transformation that 

minimizes the joint entropy, images should be registered.

• Drawbacks: when n ≫ 2, it can be computationally prohibitive.
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2.1 Mutual information (MI) 

Definition:

• For two random variables U and Z, the mutual information can be 

defined as:

𝐼 𝑈, 𝑍 = 𝐻 𝑈 − 𝐻 𝑈 𝑍 = 𝐻 𝑍 − 𝐻(𝑍|𝑈)

• MI can be related to the joint entropy in the sense:

𝐼 𝑈, 𝑍 = 𝐻 𝑈 + 𝐻 𝑍 − 𝐻(𝑈, 𝑍)

Maximum & minimum:

• The maximum attains when U is totally dependent on Z.

• The minimum attains when U and Z are independent.

Multivariate random variable: 

• If 𝑼 = 𝑈𝑗 ,  𝑈𝑗 are assumed conditionally independent given Z, 𝑗 =

1, … , 𝑁, i.e., 𝑃 𝑼 𝑍 = ς𝑗=1
𝑁 𝑃(𝑈𝑗|𝑍), 

• then MI becomes 𝐼 𝑼, 𝑍 = 𝐻 𝑼 − σ𝑗=1
𝑁 𝐻(𝑈𝑗|𝑍).
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2.1 Mutual information (MI) 

Interpretation

• A metric which measures the similarity/dependency between U and Z.

• The reduction of the amount of uncertainty about one random variable when the other 

one is known.

H(U, Z)

I(U,Z)H(U|Z) H(Z|U)

H(Z)H(U)

The advantage of MI over JE in registration:

• The marginal entropies will have low values when the overlapping part of the 

images contains only background and high values when it contains anatomical 

structures.

Pluim, Josien PW, JB Antoine Maintz, and Max A. Viergever. "Mutual-information-based registration of medical images: a survey." IEEE 

transactions on medical imaging 22.8 (2003): 986-1004.

𝐼 𝑈, 𝑍 = 𝐻 𝑈 − 𝐻(𝑈|𝑍)

𝐼 𝑈, 𝑍 = 𝐻 𝑍 − 𝐻(𝑍|𝑈)

𝐼 𝑈, 𝑍 = 𝐻 𝑈 + 𝐻 𝑍 − 𝐻(𝑈, 𝑍)

𝐼 𝑈, 𝑍 = 𝐻 𝑈, 𝑍 − 𝐻 𝑈 𝑍 − 𝐻(𝑍|𝑈)
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2.2 EM algorithm

Complete data: U, Z

• Observed data, U: intensity in the image, 𝑈 = {𝑢𝑥}𝑥∈Ω

• Latent variable, Z: common anatomy, the label in the common space, 𝑃(𝑧𝑥 =

𝑘)= 𝜋𝑘, σ𝑘=1
𝐾 𝜋𝑘 = 1

• Assume: 𝑈𝑥|𝑍𝑥 = 𝑘 ~ 𝑓𝑘(𝑢𝑥; 𝜃𝑘), 𝑘 = 1, 2, … , 𝐾
Parameters

• Categorical prior, 𝜋

• Appearance model’s parameter, 𝜃

Joint distribution and marginal:

Compute and maximize Q function

Maximize the likelihood of observed data, i.e., log 𝑃(𝑈|𝜃)ga
ox
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2.2 EM algorithm

Q function:

Estimates of the parameters are given to maximize the Q function, 

or to increase the value of the Q function

where
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2.2 EM algorithm

Objective: maximize/ increase Q function

Estimate the Q function

• Estimate prior 𝜋

• Estimate parameters in the appearance model

Methods

• If parameters can be solved analytically, just let the derivative equal 

to zero.

• If parameters can not be solved analytically, numerical methods can 

be used to give estimations and increase the value of Q function
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2.2 EM algorithm

Iterations given by EM algorithm

• 𝑞𝑥𝑘
[𝑡]

= 𝑝 𝑍𝑥 = 𝑘 𝑢𝑥, 𝜃 𝑡 ) =
𝜋𝑘

𝑡
𝑓𝑘

𝑡
(𝑢𝑥; 𝜃𝑘

𝑡
)

σ𝑙=1
𝐾 𝜋𝑙

𝑡
𝑓𝑙

𝑡
(𝑢𝑥; 𝜃𝑙

𝑡
)

• 𝜋𝑘
[𝑡+1]

=
1

|Ω|
σ𝑥 𝑞𝑥𝑘

[𝑡]

Summation of EM algorithm

• Initialize distribution parameters

• Repeat the following two steps until convergence:

• E-step: Compute the posterior and Q function

• M-step: Maximize the Q function (or increase the value of the Q 

function)
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2.2 Combined computing

By update common space parameter 𝜋: gain 

anatomy structure in the common space
Achieve 

segmentation

How mixture model and EM algorithm can be used to complete segmentation and 

registration task

Introduce parameters: 

Affine transformations 𝐺𝑖,𝑠 , atlas deformation 𝐷
Achieve 

transformation

By update 𝐺𝑖,𝑠 and 𝐷
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2.2 Combined computing

The parameters of registration and segmentation are updated 

alternately.

While X-metric can update segmentation and transformation 

parameters simultaneously.

One advantage of combined computing: The registration and 

segmentation task can benefit each other.
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1 Introduction to the framework (15mins)

• 1.1 Group Registration & Deep combined computing (10mins)

• 1.2 𝓧-metric and 𝓧-CoReg (5mins)

2 Preliminaries (30mins)

• 2.1 Entropy and Mutual information (MI) (10mins)

• 2.2 EM algorithm and combined computing (20mins)

3 Generic Framework for Registration (35mins)

• 3.1 Notation and Graphic representation (10mins) 

Break (5 mins) 

• 3.2 MLE insights and EM (20mins)

• 3.3 𝓧-metric and 𝓧-CoReg (5mins)

4 Extended Framework for DeepCC (35mins)

• 4.1 Graphic representation and Framework Modification (5mins)

• 4.2 MLE => Loss function (15mins)

• 4.3 Network Architecture and training Pipeline (15mins)

5 Experiment (15 mins)
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3.1 Notation and Graphic representation

Observed  variable: 

𝑈𝑗:  The j-th observed image,   𝑼 = {𝑈𝑗}𝑗=1
𝑁 , 𝑈𝑗∶ Ωj  →  ℝ

Latent variable: 

𝑍:   Categorical model of the common anatomy

Parameters:

𝜋:   Prior proportions of the common anatomy

Γ:   Spatial distribution of the common anatomy

𝜙𝑗: The spatial transformation 𝝓 = {𝜙𝑗}𝑗=1
𝑁 ,  𝜙𝑗 ∶ Ω →  Ωj 

Images 𝑗 = 1, … , 𝑁,   Common anatomical labels 𝑘 = 1, … , 𝐾

Image space  Ωj ,    Spatial samples   𝒙, 𝝎, 𝝃 ∈ Ω𝑗

Common space / Common coordinate system   Ω

𝑈𝑗 = (𝑢𝑗𝝎)𝝎∈Ω𝑗
,  where 𝑢𝑗𝝎 ≜ 𝑈𝑗 ∘ 𝜙𝑗(𝝎)

𝒖𝒙
𝝓

= [𝑢𝑥,1
𝜙1 , … , 𝑢𝑥,𝑁

𝜙𝑁 ]𝑇, where 𝑢𝑥,𝑗

𝜙𝑗
≜ 𝑈𝑗 ∘ 𝜙𝑗(𝒙)
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3.1 Notation and Graphic representation

𝑃(𝑼, 𝒁;  𝝓, 𝝅, 𝚪)  =  𝑃(𝑼|𝒁;  𝜙, 𝚪) 𝑃(𝒁;  𝝅)
                Joint distribution         likelihood      prior

Inference: posterior 𝑃(𝒁|𝑼;  𝝓, 𝝅, 𝚪)

Learning: likelihood 𝑃(𝑼|𝒁;  𝝓, 𝚪)
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3.2 MLE insights and EM

Complete-data log-likelihood 

Appearance model: ga
ox

in4
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3.2 MLE insights and EM

https://en.wikipedia.org/wiki/Kernel_density_estimation

Kernel density estimation (KDE) is a non-parametric method in statistics utilizing 

kernel smoothing to estimate the probability density function of a random variable 

based on weighted kernels.

Definition:  Let (𝑥1, 𝑥2, … , 𝑥𝑛) be independent and identically distributed samples 

drawn from some univariate distribution with an unknown density 𝑓 at any given 

point 𝑥. We are interested in estimating the shape of this function 𝑓. Its kernel density 

estimator is

where 𝐾 is the kernel - a non-negative function，and ℎ is 

a smoothing parameter called the bandwidth.

Kernel function: 𝛽3(·) the cubic B-spline kernel function

Sample weight: 𝛾𝑥,𝑘
[𝑡] ga
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3.2 MLE insights and EM

Expected Complete-data log-likelihood at the t-th step

Parameters to solved:

Common space parameters: 𝝅, 𝜞

Transformation parameters: 𝝓 = {𝝓𝒋}𝒋=𝟏
𝑵
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3.2 MLE insights and EM

𝝅 Lagrange multiplier
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3.2 MLE insights and EM

𝚪 𝐬𝐩𝐚𝐭𝐢𝐚𝐥 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧
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3.2 MLE insights and EM

𝚪 𝐬𝐩𝐚𝐭𝐢𝐚𝐥 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧
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3.2 MLE insights and EM

𝚪 𝐬𝐩𝐚𝐭𝐢𝐚𝐥 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧

Demonstrate the rationality:

Proof:
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3.2 MLE insights and EM

𝚪 𝐬𝐩𝐚𝐭𝐢𝐚𝐥 𝐝𝐢𝐬𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧

Proof:

Demonstrate the rationality:
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3.2 MLE insights and EM

Set

ga
ox

in4
92



35

3.2 MLE insights and EM

𝝓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏

？

Riemannian (top) vs Lebesgue (bottom) integration =>
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3.2 MLE insights and EM

𝝓 𝒕𝒓𝒂𝒏𝒔𝒇𝒐𝒓𝒎𝒂𝒕𝒊𝒐𝒏
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3.2 MLE insights and EM
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3.2 MLE insights and EM

𝓧-metric 

A combination of total correlation and intensity-class mutual information

• The reduction in uncertainty of the common anatomy due to the observation.

• The sharpening of the inferred common anatomy. That is, as 𝐼 𝑈, 𝑍  

increases, the conditional entropy would H 𝑍| 𝑈 reduce and the posterior 

distribution P 𝑍| 𝑈 would become more concentrated.
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3.2 MLE insights and EM

𝓧-metric 

Kernel density estimator (KDE)ga
ox
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3.2 MLE insights and EM

Common space parameters: 𝝅, 𝜞

Transformation parameters: 𝝓 = {𝝓𝒋}𝒋=𝟏
𝑵

MLE
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4.1 Framework Modification 

Introduce of segmentation masks of partial images

• {𝑌𝑗}𝑗 ∈ ℐ, the available segmentation masks of the corresponding 

observed images {𝑈𝑗}𝑗 ∈ ℐ, where ℐ is an index set.

• 𝑌𝑗 is a categorical random field

– 𝑌𝑗 = (𝑦𝑗𝜔)𝜔𝜖Ω𝑗

– 𝑦𝑗𝜔 = 𝑦𝑗𝜔,1, … , 𝑦𝑗𝜔,𝐾 ∈ 0, 1 𝐾, a one-hot vector 

• ρ𝑗, the probability maps of the segmentation 𝑌𝑗

where 𝐷𝑗𝑘 is the signed distance map of 𝑌𝑗 for label k, and 𝜏 controls the 

slope of the distance.ga
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4.1 Graphic representation 

Generic Framework & Extended Framework

• Circles: Random variables

• Rounded boxes: Deterministic parameters

• Shaded circles: Observed variables 

• Ellipses: Replication

• Solid arrows: Generation 

• Dashed arrows: Inference procedure from a 

neural network

• Dotted arrows indicate that the corresponding 

conditional probability distribution is not 

incorporated in posterior computation

• 𝑈𝑗:  the j-th observed image

• 𝑍:   categorical model of the common anatomy

• 𝜋:   prior proportions of the common anatomy

• Γ:   spatial distribution of the common anatomy

• 𝜙𝑗: the spatial transformation from Ω to Ω𝑗

• 𝑌𝑗:  the available segmentation mask of 𝑈𝑗 

• ෠𝑌𝑗:  the predicted segmentation mask of 𝑈𝑗 

Γ

𝜋
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4.2 MLE => Loss function 

Compute Q function

𝑃 𝑈, 𝑍, 𝑌; 𝜙, Γ, 𝜋

= 𝑃 𝑈 𝑌, 𝑍; 𝜙, Γ 𝑃 𝑌 𝑍; 𝜙 𝑃(𝑍; 𝜋)

= 𝑃(𝑍; 𝜋) ෑ

j=1

𝑁

𝑃 𝑢𝑗 𝑦𝑗, 𝑍; 𝜙𝑗, Γ)𝑃 𝑦𝑗 𝑍, 𝜙𝑗)

= ෑ

x 𝜖 Ω𝜙

ෑ

𝑘=1

𝐾

[𝑃(𝑧𝑥,𝑘 = 1; 𝜋) ෑ

𝑗=1

𝑁

𝑃(𝑢𝑗𝑥

𝜙𝑗|𝑦𝑗𝜙𝑗 𝑥 ,𝑘 = 1, 𝑧𝑥,𝑘 = 1; 𝜙𝑗, Γ ) 𝑃 𝑦𝑗𝜙𝑗 𝑥 ,𝑘 = 1 𝑧𝑥,𝑘 = 1, 𝜙𝑗)] 1(𝑧𝑥,𝑘=1)

𝑙𝑜𝑔𝑃 𝑈, 𝑍, 𝑌; 𝜙, Γ, 𝜋

= σx ∈ Ω𝜙 σ𝑘=1
𝐾 1 𝑧𝑥,𝑘 = 1 [𝑙𝑜𝑔𝛾𝑥,𝑘 + σ𝑗=1

𝑁 𝑙𝑜𝑔𝑓𝑗𝑘 𝜇𝑗; 𝜙𝑗, Γ 𝑃(𝑦𝑗𝜙𝑗 𝑥 ,𝑘 = 1|𝑧𝑥,𝑘 = 1, 𝜙𝑗)]

关于Z|𝑈, 𝑌; 𝜃[𝑡]求期望，可得

𝑄 𝜃 𝜃[𝑡]) = ෍

𝑥𝜖Ω𝜙

෍

𝑘=1

𝐾

𝑞𝑥,𝑘
[𝑡]

[log 𝛾𝑥,𝑘 + ෍

𝑗=1

𝑁

log 𝑓𝑗𝑘 𝜇𝑗; 𝜙𝑗, Γ 𝑃(𝑦𝑗𝜙𝑗 𝑥 ,𝑘 = 1|𝑧𝑥,𝑘 = 1, 𝜙𝑗)]

Γ

𝜋
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4.2 MLE => Loss function 

𝛾𝑥,𝑘
[𝑡+1]

= 𝑞𝑥,𝑘
[𝑡] 𝜋𝑘

[𝑡+1]
= 

σ
𝑥 𝜖 Ω𝜙 𝛾𝑥,𝑘

[𝑡+1]

σ𝑘=1
𝐾 σ

𝑥∈Ω𝜙 𝛾𝑥,𝑘
[𝑡+1]

按照前面类似的求解方法，可得

给出𝑞𝑥,𝑘
[𝑡]

的估计式

• q𝑥,𝑘 = 𝑃 𝑧𝑥,𝑘 = 1 𝑢𝑥
𝜙

, 𝑦𝑥
𝜙

; 𝜙, Γ, 𝜋

∝ 𝑃(𝑧𝑥,𝑘 = 1; 𝜋) ෑ

𝑗=1

𝑁

𝑃 𝑦𝑗𝜙𝑗 𝑥 ,𝑘=1| 𝑧𝑥,𝑘=1; 𝜙𝑗
𝑃(𝑢

𝑥,𝑗

𝜙𝑗
= 𝜇𝑗|𝑦𝑗𝜙𝑗 𝑥 ,𝑘 = 1, 𝑧𝑥,𝑘 = 1; 𝜙𝑗 , Γ) (1)

(2)

(3)

其中，
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4.2 MLE => Loss function 

𝑙𝑜𝑔𝑃 𝑈, 𝑍, 𝑌; 𝜙, Γ, 𝜋

= σx ∈ Ω𝜙 σ𝑘=1
𝐾 1 𝑧𝑥,𝑘 = 1 [𝑙𝑜𝑔𝛾𝑥,𝑘 + σ𝑗=1

𝑁 𝑙𝑜𝑔𝑓𝑗𝑘 𝜇𝑗 ; 𝜙𝑗 , Γ 𝑃(𝑦𝑗𝜙𝑗 𝑥 ,𝑘 = 1|𝑧𝑥,𝑘 = 1, 𝜙𝑗)]

𝑆 𝜙, Γ; 𝜃 𝑡 = ෍

x ∈ Ω𝜙

[෍

𝑘=1

𝐾

𝑞𝑥,𝑘
[𝑡]

෍

𝑗=1

𝑁

log 𝑓𝑗𝑘 (𝜇𝑗 ; 𝜙𝑗 , Γ) + ෍

𝑘=1

𝐾

𝑞𝑥,𝑘
[𝑡]

෍

𝑗=1

𝑁

log 𝑃 𝑦𝑗𝜙𝑗 𝑥 ,𝑘
= 1 𝑧𝑥,𝑘 = 1, 𝜙𝑗)]

(1) (2)
(1): the cross entropy between the posterior and the appearance model, approximate 

it using the proposed X-metric

𝐿1 𝜙 ≜ −𝜒 𝑈 𝜙 , 𝑍 2 + 𝜆 · 𝑅(𝜙)

(2): the cross entropy between the posterior and the warped probability maps → a 

hybrid loss

𝐿2 𝜙, ො𝜌 ≜ ෍

𝑗 𝜖 𝒥

𝐻𝑧 2 𝑌𝑗 ∘ 𝜙𝑗 + ෍

𝑗 ∉ 𝒥

𝐻𝑍[2] ( ෠𝑌𝑗 ∘ 𝜙𝑗)

where 𝐻𝑍 2 𝑌𝑗 ∘ 𝜙𝑗 ≜ -
1

|Ω|
σ𝑥 ∈ Ω σ𝑘=1

𝐾 𝛾𝑥,𝑘
[2]

log 𝜌𝑗𝑘(𝜙𝑗 𝑥 ),

𝐻𝑍 2 ( ෠𝑌𝑗 ∘ 𝜙𝑗) ≜ -
1

|Ω|
σ𝑥 ∈ Ω σ𝑘=1

𝐾 𝛾𝑥,𝑘
[2]

log ො𝜌𝑗𝑘(𝜙𝑗 𝑥 ).

ga
ox

in4
92



47

4.2 EM => Loss function 

Finally, a segmentation loss is included, i.e.,

𝐿3 ො𝜌 ≜ − ෍

𝑗=1

𝑁

𝐼 𝑈𝑗 , ෠𝑌𝑗 + ෍

𝑗 ∉ 𝒥

𝐻 ෠𝑌𝑗 + ෍

𝑗 ∈ 𝒥

𝐿𝑠𝑒𝑔(𝑌𝑗 , ෠𝑌𝑗)

(1): optimize probability maps based on image intensities

(2): encourage the probability vector [ ො𝜌𝑗1 𝑤 , …, ො𝜌𝑗𝐾 𝑤 ] to be concentrated

(3): 𝐿𝑠𝑒𝑔(𝑌𝑗, ෠𝑌𝑗) ≜ 𝐻𝑌𝑗
( ෠𝑌𝑗) + [1 - DSC(𝑌𝑗, ෠𝑌𝑗)], measure the discrepancy 

between the network prediction and the ground-truth segmentation

The total loss function: 𝐿 𝜙, ො𝜌 ≜ 𝐿1 𝜙 + 𝐿2 𝜙, ො𝜌 + 𝐿3 ො𝜌ga
ox

in4
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4.3 Network Architecture

The network is composed of an encoder ℰ, a bottleneck, a segmentation 

decoder 𝐷𝑠 and a registration decoder 𝐷𝑟.

They comprise multiple levels of residual convolutional blocks (RCBs) and 

residual connections between the encoder and decoder. 
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4.3 Training Pipeline  

The network parameters for segmentation and registration are optimized 

alternately so that the improvement of one task can benefit the other.

We choose to alternate training between the two branches because in 

Eq.(42) the term 𝐻𝑍 2 ( ෠𝑌𝑗 ∘ 𝜙𝑗) is computed using both branches.

• ෠𝑌𝑗 is predicted by the segmentation branch.

• 𝜙𝑗 is predicted by the registration branch.

• To avoid interference in two branches, like the situation where the registration 

branch may seek to compensate for errors in the segmentation prediction, it 

could be better to alternate the training for the two branches.

Segmentation: 𝐿2, 𝐿3

Update ො𝜌
Registration: 𝐿1, 𝐿2

Update 𝜙
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1 Introduction to the framework (15mins)

• 1.1 Group Registration & Deep combined computing (10mins)

• 1.2 𝓧-metric and 𝓧-CoReg (5mins)

2 Preliminaries (30mins)

• 2.1 Entropy and Mutual information (MI) (10mins)

• 2.2 EM algorithm and combined computing (20mins)

3 Generic Framework for Registration (35mins)

• 3.1 Notation and Graphic representation (10mins) 

Break (5 mins) 

• 3.2 MLE insights and EM (20mins)

• 3.3 𝓧-metric and 𝓧-CoReg (5mins)

4 Extended Framework for DeepCC (35mins)

• 4.1 Graphic representation and Framework Modification (5mins)

• 4.2 MLE => Loss function (15mins)

• 4.3 Network Architecture and training Pipeline (15mins)

5 Experiment (15 mins)

50

Content
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Experiment 1: Group Registration

Multimodal nonrigid groupwise registration for multi-sequence brain MRI

The BrainWeb online database1 provides simulated T1-, T2- and PD-

weighted MRI volumes from an anatomical phantom

spacing of 181×217×181 mm3  

K = 4: cerebrospinal fluid (CSF), grey matter (GM), and white matter 

(WM), background

Generate the initial misalignments

multi-level isotropic FFDs

deformation regularization was imposed by bending energy over the FFD 

meshes, with λ=0.001

Adam optimizer, initial step size η=0.1
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Code: Main Pipeline
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Code: Trainer
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Code: Model
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Code: Model

Init parameters
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Code: Model
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Code: Model
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Code: Model

与更新 𝜙𝑗  无关 实现中省略
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Code: Model

图像配准中的弯曲能量（Bending Energy），用于
正则化（regularization）优化过程中的位移场
（displacement field），用于使变换场更加平滑和
连续，有助于避免过度拟合和减少不必要的局部
变形。
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Code: Metric

The root mean squared 

residual displacement error

(The groupwise warping 

index (gWI))

ga
ox

in4
92



61

Experiment 1: Group Registration

Posterior

Initial: 20mm, Reg FFD mesh spacing: 20

Label (Not included in training) 

CSF            GM WM

ga
ox

in4
92



62

Experiment 1: Group Registration
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Experiment 2: Deep combined computing

Achieving simultaneous registration and segmentation in an end-to-end 

fashion.

The extended framework on deep combined computing for multi-sequence 

cardiac MRI from the MS-CMR dataset.

MS-CMR dataset provides multi-sequence cardiac MR images for 45 

patients, LGE, bSSFP, and T2-weighted

K = 4 for the myocardium, left ventricle, right ventricle and the 

background

Preprocessed

39 image slices for training, 15 for validation and 44 for testing

Five synthetic FFDs were generated with four different mesh spacings for 

each sequence. 39 * 5^3 * 4 = 19500 image groups
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Code: Data

Signed distance map
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Code: Training pipeline 

inter_step = 5
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Code: Network

• Encoder

• Seg_decoder

• Reg_decoderga
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Code: Loss function
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Code: Loss function

计算后验

Appearance model
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Code: Loss function

t = 1

Note: We use 𝑍[2] 
instead of 𝑍[1] because 

at 𝑡 = 0 the appearance 

model is calculated 

using the probability 

maps of the image 

anatomy rather than 

the spatial distribution 

of the common anatomy.ga
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Code: Loss function

t = 1
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Code: Loss function

t = 0

t = 1
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Experiment 2: Deep combined computing

• Both registration and segmentation 

accuracies improve with increased 

supervision

• Compared to MvMM, the DCC+AT 

strategy performs better in registration
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